

TECHNICAL HANDBOOK

The head office of A. FRIEDR. FLENDER AG is located in Bocholt. The company was founded at the end of the last century and in the early years of its existence was involved in the manufacture and sales of wooden pulleys. At the end of the 20's, FLENDER started to manufacture gear units, couplings and clutches, and with the development and manufacture of one of the first infinitely variable speed gear units, FLENDER became a leader in the field of power transmission technology.

Today, FLENDER is an international leader in the field of stationary power transmission technology, and a specialist in the supply of complete

drive systems. FLENDER manufactures electronic, electrical, mechanical and hydraulic components which are offered both as individual components and as partial or complete systems. FLENDER's world-wide workforce consists of approximately 7,200 employees. Eight manufacturing plants and six sales centres are located in

FLENDER, Bocholt

Germany. Nine manufacturing plants, eighteen sales outlets and more than forty sales offices are currently in operation in Europe and overseas.

The eight domestic manufacturing plants form a comprehensive concept for all components involved in the drive train.

Core of the entire group of companies is the mechanical power transmission division. With its factories in Bocholt, Penig and the French works FLENDER-Graffenstaden in Illkirch it covers the spectrum of stationary mechanical drive elements. The product range is rounded off by the geared motors manufactured at FLENDER TÜBINGEN GMBH.

The fields of electronics, electrotechnics and motors are covered by LOHER AG which also belongs to the group of companies. FLENDER GUSS GMBH in Wittgensdorf/Saxony put FLEN-DER in a position to safeguard the supply of semi-finished goods for the FLENDER group and at the same time provide large capacities for castings for customers' individual requirements. With its extensive range of services offered by FLENDER SERVICE GMBH, the group's range of products and services is completed.

Thus, FLENDER offers to the full, the expertise for the entire drive train - from the power supply to the processing machine, from the know-how transfer of single components to complete solutions for each kind of application.

In 1991, LOHER AG became a hundred percent subsidiary of FLENDER AG. The product range covers three-phase motors ranging from 0.1 to 10,000 kW for low and high voltage, as well as electronic equipment for controlling electrical drives of up to 6,000 kW. Apart from the manufacture of standard motors, the company specializes in the production of motors in special design according to customers' requirements. The products are used world-wide in the chemical and petrochemical industries, in elevator and mechanical engineering, for electric power generation, in on- and off-shore applications, as well as in the field of environmental technology.

MOTOX helical geared motor

FLENDER

Tübingen

The company FLENDER TÜBINGEN GMBH has its origins in a firm founded in Tübingen in 1879 by the optician and mechanic Gottlob Himmel. Today, the main emphasis of the FLENDER TÜBINGEN GMBH production is based on geared motors as compact units. Furthermore, the product range includes medium- and high-frequency generators for special applications in the

Speed-controlled three-phase motors for hotwater circulating pump drives for long-distance heating supply

LOHER three-phase slip-ring motor for high voltage with motor-operated short-circuit brush lifting device (KBAV)

MOTOX bevel geared motors driving lifting jacks for the maintenance of the ICE

sectors of heat, welding and soldering technology.

About 650 employees are working in the factory and office buildings located at the outskirts of Tübingen. Helical, worm, bevel-helical and variable speed geared motors are made by using the latest manufacturing methods.

FLENDER Kupplungswerk Mussum

In 1990, the Couplings division was separated from the FLENDER parent plant in Bocholt, and newly established in the industrial area Bocholt-Mussum. With this most modern factory it was aimed at combining all depart-ments involved in a largely independent business sector.

FLENDER-N-EUPEX coupling

Since its foundation in 1899, FLENDER has been manufacturing couplings for industrial applications within an ever growing product range. With an increasing diversification in the field of power transmission technology the importance of couplings is permanently growing. FLENDER makes torsionally rigid and flexible

couplings, clutches and friction clutches, as well as fluid couplings within torque ranges from 10 to 10,000,000 Nm.

FLENDER-N-EUPEX coupling and FLENDER-ELPEX coupling

in a pump drive

FLENDER is world-wide the biggest supplier of stationary mechanical power transmission equipment. The product range comprises mainly gear units, worm gear units and variable speed drives.

Innovative developments continuously require new standards in the gear unit technology. A wide range of standard gear units, but also of

standardized custom-made gear units for almost all drive problems enable FLENDER to offer specific solutions for any demand, high-quality standards and quick deliveries being taken for granted.

FLENDER girth gear unit in a tube mill drive

FLENDER-CAVEX worm gear unit

When placing orders in the field of power trans-mission technology and for components which go with it, machinery and equipment manufactur-ers worldwide prefer to consult specialists who have industry-specific knowledge and experience.

Planetary helical gear unit for a wind power station

FLENDER AG has taken that fact into account by setting up industry sector groups. Project teams are working on industry-specific solutions to meet customer demands.

FLENDER components in a drive of a wind power station

Pumping station in Holland with water screw pump drives by FLENDER

FLENDER bevel-helical gear unit type B3SH 19 with a RUPEX coupling on the output side in a screw pump drive

FLENDER Getriebewerk Penig

Since April 1, 1990 Getriebewerk Penig has been a hundred percent subsidiary of the FLEN-DER group.

After its acquisition, the production facilities were considerably expanded and brought up to the latest level of technology. The production of the new FLENDER gear unit series has been centralized at this location. This standard product range which was introduced in 1991

FLENDER bevel-helical gear unit

meets highest technical requirements, and can be utilized universally for many applications. Furthermore, special design gear units of series production used for custom-made machines in the machine building industry are manufactured in Penig.

FLENDER bevel-helical gear unit driving a dosing machine in a brickworks

FLENDER-GRAFFENSTADEN is an internationally leading supplier of gear units and power transmission elements for gas, steam, and water turbines, as well as of power transmission technology for pumps and compressors used in the chemical industry.

FLENDER-GRAFFENSTADEN Graffenstaden

Customer advice, planning, assembly, spare parts deliveries, and after-sales-service form a solid foundation for a high-level cooperation.

FLENDER-GRAFFENSTADEN high-speed gear unit in a power station drive

FLENDER-GRAFFENSTADEN high-speed gear unit

FLENDER SERVICE

Herne

With the founding of FLENDER SERVICE GMBH, FLENDER succeeded in optimizing customer service even more. Apart from technical after-sales-service, SERVICE GMBH provides a comprehensive service programme including maintenance, repair, machine surveillance, sup-

Mobile gear unit surveillance acc. to the vibration analysis method

Data analysis on an ATPC

ply of spare parts, as well as planning, using FLENDER know-how and making use of own engineering and processing capacities. Owing to high flexibility and service at short notice unnecessary down-times of customers' equipment are avoided.

The service is not restricted to FLENDER products but is provided for all kinds of gear units and power transmission equipment. High-quality cast iron from Saxony - this is guaranteed by the name of FLENDER which is linked with the long-standing tradition of the major foundry in the Saxonian region. In addition to the requirements of the FLENDER group of companies, FLENDER GUSS GmbH is in a position to provide substantial quantities of high-quality job castings.

Wittgensdorf is the location of this most modern foundry having an annual production capacity of 60,000 tonnes.

Charging JUNKER furnaces with pig iron

FLENDER castings stand out for their high quality and high degree of precision

Since its foundation, FLENDER has always attached great importance to a world-wide presence.

In Germany alone there are eight manufacturing plants and six sales centres.

Nine manufacturing plants, eighteen sales outlets and more than forty sales offices in Europe and overseas guarantee that we are close to our customers and able to offer services world-wide.

Please contact us. We would be pleased to inform you about the exact locations of our manufacturing plants and sales outlets.

A. FRIEDR. FLENDER AG

D-46393 BOCHOLT - TEL: (0 28 71) 92 - 0 - FAX: (0 28 71) 92 25 96 DELIVERY ADDRESS: ALFRED-FLENDER-STRASSE 77, D-46395 BOCHOLT http://www.flender.com A. FRIEDR. FLENDER AG Kupplungswerk Mussum A. FRIEDR. FLENDER AG Werk Friedrichsfeld

A. FRIEDR. FLENDER AG Getriebewerk Penig FLENDER TÜBINGEN GMBH

FLENDER SERVICE GMBH

FLENDER GUSS GMBH

LOHER AG

Industriepark Bocholt, Schlavenhorst 100, D-46395 Bocholt Tel.: (0 28 71) 92 - 28 00; Fax: (0 28 71) 92 - 28 01

Laboratoriumstrasse 2, D-46562 Voerde Tel.: (0 28 71) 92 - 0; Fax: (0 28 71) 92 - 25 96

Thierbacher Strasse 24, D-09322 Penig Tel.: (03 73 81) 60; Fax: (03 73 81) 8 02 86

D-72007 Tübingen - Bahnhofstrasse 40, D-72072 Tübingen Tel.: (0 70 71) 7 07 - 0; Fax: (0 70 71) 7 07 - 4 00

D-44607 Herne - Südstrasse 111, D-44625 Herne Tel.: (0 23 23) 9 40 - 0; Fax: (0 23 23) 9 40 - 2 00

Obere Hauptstrasse 228 - 230, D-09228 Wittgensdorf Tel.: (0 37 22) 64 - 0; Fax: (0 37 22) 64 - 21 89

D-94095 Ruhstorf - Hans-Loher-Strasse 32, D-94099 Ruhstorf Tel.: (0 85 31) 3 90; Fax: (0 85 31) 3 94 37

Contents

Section 1	Page
Technical Drawings	
Surface Texture	23/24
Geometrical Tolerancing	25-38
Sheet Sizes, Title Block, Non-standard Formats	39
Drawings Suitable for Microfilming	40/41
Section 2	
Standardization	
ISO Metric Screw Threads (Coarse Pitch Threads)	43
ISO Metric Screw Threads (Coarse and Fine Pitch Threads)	44
Cylindrical Shaft Ends	45
ISO Tolerance Zones, Allowances, Fit Tolerances	46/47
Parallel Keys, Taper Keys, and Centre Holes	48
Section 3	
Physics	
Internationally Determined Prefixes	50
Basic SI Units	50
Derived SI Units	51
Legal Units Outside the SI	51
Physical Quantities and Units of Lengths and Their Powers	52
Physical Quantities and Units of Time	53
Physical Quantities and Units of Mechanics	53/55
Physical Quantities and Units of Thermodynamics and Heat Transfer	55/56
Physical Quantities and Units of Electrical Engineering	56
Physical Quantities and Units of Lighting Engineering	57
Different Measuring Units of Temperature	57
Measures of Length and Square Measures	58
Cubic Measures and Weights	59
Energy, Work, Quantity of Heat	59
Power, Energy Flow, Heat Flow	60
	60
Velocity	60
Equations for Linear Motion and Rotary Motion	01
Section 4	
Mathematics/Geometry	<u></u>
Calculation of Areas	63
Calculation of Volumes	64
Section 5	
Mechanics/Strength of Materials	
Axial Section Moduli and Axial Second Moments of Area	66
Deflections in Reams	67 67
Values for Circular Sections	68
Stresses on Structural Members and Fatigue Strength of Structures	00
	09

Section 6	Page
Hydraulics	
Hydrostatics	71
Hydrodynamics	72
Section 7	
Electrical Engineering	
Basic Formulae	74
Speed, Power Rating and Efficiency of Electric Motors	75
Types of Construction and Mounting Arrangements of Rotating Electrical Machinery	76
Types of Protection for Electrical Equipment (Protection Against Contact and Foreign Bo	odies) 77
Types of Protection for Electrical Equipment (Protection Against Water)	78
Explosion Protection of Electrical Switchgear	79/80
Section 8	
N aterials	
Conversion of Fatigue Strength Values of Miscellaneous Materials	82
Aechanical Properties of Quenched and Tempered Steels	83
atigue Strength Diagrams of Quenched and Tempered Steels	84
General-Purpose Structural Steels	85
atigue Strength Diagrams of General-Purpose Structural Steels	86
Case Hardening Steels	87
Fatigue Strength Diagrams of Case Hardening Steels	88
Cold Rolled Steel Strips for Springs	89
Cast Steels for General Engineering Purposes	89
Round Steel Wire for Springs	90
amellar Graphite Cast Iron	90
Nodular Graphite Cast Iron	91
Copper-Tin- and Copper-Zinc-Tin Casting Alloys	92
Copper-Aluminium Casting Alloys	92
Aluminium Casting Alloys	93
ead and Tin Casting Alloys for Babbit Sleeve Bearings	94
Comparison of Tensile Strength and Miscellaneous Hardness Values	95
alues of Solids and Liquids	96
Coefficient of Linear Expansion	97
ron-Carbon Diagram	97
-atigue Strength Values for Gear Materials	97
Heat Treatment During Case Hardening of Case Hardening Steels	98

Section 9

Lubricating Oils100Viscosity-Temperature-Diagram for Mineral Oils100Viscosity-Temperature-Diagram for Synthetic Oils of Poly-α-Olefine Base101Viscosity-Temperature-Diagram for Synthetic Oils of Polyglycole Base102Kinematic Viscosity and Dynamic Viscosity103Viscosity Table for Mineral Oils104

Contents

Section 10	Page
Cylindrical Gear Units	
Symbols and Units	106/107
General Introduction	108
Geometry of Involute Gears	108-119
Load Carrying Capacity of Involute Gears	119-127
Gear Unit Types	127-130
Noise Emitted by Gear Units	131-134
Section 11	
Shaft Couplings	
General Fundamental Principles	136
Rigid Couplings	136
Torsionally Flexible Couplings	136/138
Torsionally Rigid Couplings	138
Synoptical Table of Torsionally Flexible and Torsionally Rigid Couplings	139
Positive Clutches and Friction Clutches	140
Section 12	
Vibrations	
Symbols and Units	142
General Fundamental Principles	143-145
Solution Proposal for Simple Torsional Vibrators	145/146
Solution of the Differential Equation of Motion	146/147
Symbols and Units of Translational and Torsional Vibrations	148
Formulae for the Calculation of Vibrations	149-151
Evaluation of Vibrations	151/152
Section 13	
Bibliography of Sections 10, 11, and 12	153-155

Technical Drawings	Page
Surface Texture	
Method of indicating surface texture on drawings acc. to DIN ISO 1302	23
Explanation of the usual surface roughness parameters	23
Comparison of roughness values	24
Geometrical Tolerancing	
General	25
Application; general explanations	25
Kinds of tolerances; symbols; included tolerances	26
Tolerance frame	26
Toleranced features	27
Tolerance zones	27
Datums and datum systems	27-29
Theoretically exact dimensions	29
Detailed definitions of tolerances	29-38
Sheet Sizes, Title Blocks, Non-standard Formats	
Sheet sizes for technical drawings	39
Title blocks for technical drawings	39
Non-standard formats for technical drawings	39
Drawings Suitable for Microfilming	
General	40
Lettering	40
Sizes of type	40
Lines acc. to DIN 15 Part 1 and Part 2	40
Ink fountain pens	41
Lettering example with stencil and in handwriting	41

22

1.1 Symbols	
Symbol without additional indications. Basic symbol. The meaning must be explained by additional indications.	\checkmark
Symbol with additional indications. Any production method, with specified roughness.	3.2
Symbol without additional indications. Removal of material by machining, without specified roughness.	\checkmark
Symbol with additional indications. Removal of material by machining, with specified roughness.	3.2
Symbol without additional indications. Removal of material is not permitted (surface remains in state as supplied).	\checkmark
Symbol with additional indications. Made without removal of material (non-cutting), with specified roughness.	3.2

1.2 Position of the specifications of surface texture in the symbol

- a = Roughness value R_a in micrometres or microinches or roughness grade number N1 to N12
- b = Production method, surface treatment or coating
- c = Sampling length
- d = Direction of lay
- e = Machining allowance
- $f = Other roughness values, e.g. R_z$

	Examples		Explanation		
P	roduction method	b			
Any	Material removing	Non-cutting			
0.8/ N6/	0.8/N6/	0.8/N6/	Centre line average height R _a : maximum value = 0.8 μm		
R _z 25	$\sqrt{\frac{R_z 25}{}}$	√ R _z 25	Mean peak-to-valley height R _z : maximum value = 25 μm		
	0.25/R _z 1		Mean peak-to-valley height R_z : maximum value = 1 μ m at cut-off = 0.25 mm		

2. Explanation of the usual surface roughness parameters

2.1 Centre line average height R_a acc. to DIN 4768

The <u>centre line average height R_a</u> is the arithmetic average of the absolute values of the distan-

ces y between the profile heights and the centre line within the measuring length. This is equivalent to the height of a rectangle (A_g) with a length equal to the evaluation length I_m and with an area equal to the sum of the areas enclosed between the roughness profile and the centre line $(A_{oi}$ and $A_{ui})$ (see figure 1).

2.2 Mean peak-to-valley height R_z acc. to DIN 4768

The mean peak-to-valley height R_z is the arithmetic average of the single irregularities of five consecutive sampling lengths (see figure 2).

Note:

An exact conversion of the peak-to-valley height R_z and the centre line average height R_a can neither be theoretically justified nor empirically proved. For surfaces which are generated by manufacturing methods of the group "metal cutting", a diagram for the conversion from R_a to R_z and vice versa is shown in supplement 1 to DIN 4768 Part 1, based on comparison measurements (see table "Comparison of roughness values").

2.3 Maximum roughness height R_{max} acc. to DIN 4768 (see figure 2)

The maximum roughness height R_{max} is the largest of the single irregularities z occurring over the evaluation length I_m (in figure 2: z_3). R_{max} is stated in cases where the largest single irregularity ("runaway") is to be recorded for reasons important for function.

2.4 Roughness grade numbers N.. acc. to DIN ISO 1302

In supplement 1 to DIN ISO 1302 it is recommended <u>not</u> to use roughness grade numbers. The N-grade numbers are most frequently used in America (see also table "Comparison of roughness values").

3. Comparison of roughness values														
	Roughness	μm	0.025	0.05	0.1	0.2	0.4	0.8	1.6	3.2	6.3	12.5	25	50
DIN	values R _a	μin	1	2	4	8	16	32	63	125	250	500	1000	2000
ISO 1302	Roughness grade number		N1	N2	N3	N4	N5	N6	N7	N8	N9	N10	N11	N12
Suppl. 1 to DIN 4768/1	I. 1 Roughness IN values R _z in μm	from	0.1	0.25	0.4	0.8	1.6	3.15	6.3	12.5	25	40	80	160
		to	0.8	1.6	2.5	4	6.3	12.5	20	31.5	63	100	160	250

Technical Drawings Geometrical Tolerancing

4. General

4.1 The particulars given are in accordance with the international standard DIN ISO 1101, March 1985 edition.

This standard gives the principles of symbolization and indication on technical drawings of tolerances of form, orientation, location and runout, and establishes the appropriate geometrical definitions. The term "geometrical tolerances" is used in this standard as generic term for these tolerances.

4.2 Relationship between tolerances of size, form and position

According to current standards there are two possibilities of making indications on technical drawings in accordance with:

a) the principle of independence according to DIN ISO 8015 where tolerances of size, form and position must be adhered to <u>independent</u> of each other, i.e. there is no direct relation between them. In this case reference must be made on the drawing to DIN ISO 8015.

b) the envelope requirements according to DIN 7167, according to which the tolerances of size, form and parallelism are in direct relation with each other, i.e. that the size tolerances limit the form and parallelism tolerances. In this case no special reference to DIN 7167 is required on the drawing.

5. Application; general explanations

5.1 Geometrical tolerances shall be specified on drawings only if they are imperative for the functioning and/or economical manufacture of the respective workpiece. Otherwise, the general tolerances according to DIN 7168 apply.

5.2 Indicating geometrical tolerances does not necessarily imply the use of any particular method of production, measurement or gauging.

5.3 A geometrical tolerance applied to a feature defines the tolerance zone within which the feature (surface, axis, or median plane) is to be contained.

According to the characteristic which is to be tolerated and the manner in which it is dimensioned, the tolerance zone is one of the following:

- the area within a circle;
- the area between two concentric circles;
- the area between two equidistant lines or two parallel straight lines;
- the space within a cylinder;
- the space between two coaxial cylinders;
- the space between two parallel planes;
- the space within a parallelepiped.

The toleranced feature may be of any form or orientation within this tolerance zone, unless a more restrictive indication is given.

5.4 Unless otherwise specified, the tolerance applies to the whole length or surface of the considered feature.

5.5 The datum feature is a real feature of a part, which is used to establish the location of a datum.

5.6 Geometrical tolerances which are assigned to features referred to a datum do not limit the form deviations of the datum feature itself. The form of a datum feature shall be sufficiently accurate for its purpose and it may therefore be necessary to specify tolerances of form for the datum features.

5.7 See Page 26

5.8 Tolerance frame

The tolerance requirements are shown in a rectangular frame which is divided into two or more compartments. These compartments contain, from left to right, in the following order (see figures 3, 4 and 5):

- the symbol for the characteristic to be toleranced;
- the tolerance value in the unit used for linear dimensions. This value is preceded by the sign Ø if the tolerance zone is circular or cylindrical;
- if appropriate, the capital letter or letters identifying the datum feature or features (see figures 4 and 5)

Figure 3	
-0.1	

6 holes

⊕ø0.1

Figure 6

Remarks referred to the tolerance, for example "6 holes", "4 surfaces", or "6 x" shall be written above the frame (see figures 6 and 7).

6 x

⊕ø0.1

Figure 7

If it is necessary to specify more than one tolerance characteristic for a feature, the tolerance specifications are given in tolerance frames one below the other (see figure 8).

Toler	ances	Symbols	Toleranced characteristics	Included tolerances
			Straightness	-
			Flatness	Straightness
Form to	lerances	\bigcirc	Circularity (Roundness)	-
		Ø	Cylindricity	Straightness, Parallel ism, Circularity
		//	Parallelism	Flatness
Tolerances	Orientation tolerances		Perpendicularity	Flatness
			Angularity	Flatness
	Location to-	\oplus	Position	-
position ¹⁾		0	Concentricity, Coaxiality	-
		=	Symmetry	Straightness, Flatness Parallelism
	Runout tolerances	1	Circular runout, Axial runout	Circularity, Coaxiality

Description				
Toleranced feature indications	direct			
	direct			
Datum indications	by capital letter	A		
Theoretically exact dimension		50		

5.9 Toleranced features

The tolerance frame is connected to the toler-anced feature by a leader line terminating with an arrow in the following way:

- on the outline of the feature or an extension of the outline (but clearly separated from the dimension line) when the tolerance refers to the line or surface itself (see figures 9 and 10).

as an extension of a dimension line when the tolerance refers to the axis or median plane defined by the feature so dimensioned (see figures 11 to 13).

- on the axis or the median plane when the tolerance refers to the common axis or median plane of <u>two</u> features (see figure 14).

Note:

Whether a tolerance should be applied to the contour of a cylindrical or symmetrical feature or to its axis or median plane, depends on the functional requirements.

5.10 Tolerance zones

The tolerance zone is the zone within which all

the points of a geometric feature (point, line, surface, median plane) must lie. The width of the tolerance zone is in the direction of the arrow of the leader line joining the tolerance frame to the feature which is toleranced, unless the tolerance value is preceded by the sign \emptyset (see figures 15 and 16).

Where a <u>common tolerance zone</u> is applied to several separate features, the requirement is indicated by the words "common zone" above the tolerance frame (see figure 17).

5.11 Datums and datum systems

Datum features are features according to which a workpiece is aligned for recording the tolerated deviations.

5.11.1 When a toleranced feature is referred to a datum, this is generally shown by datum letters. The same letter which defines the datum is repeated in the tolerance frame.

To identify the datum, a capital letter enclosed in a frame is connected to a solid datum triangle (see figure 18).

The datum triangle with the datum letter is placed:

 on the outline of the feature or an extension of the outline (but clearly separated from the dimension line), when the datum feature is the line or surface itself (see figure 19).

- as an extension of the dimension line when the datum feature is the axis or median plane (see figures 20 and 21).

Note:

If there is not enough space for two arrows, one of them may be replaced by the datum triangle (see figure 21).

- on the axis or median plane when the datum is:
- a) the axis or median plane of a single feature (for example a cylinder);
- b) the common axis or median plane formed by two features (see figure 22).

If the tolerance frame can be directly connected with the datum feature by a leader line, the datum letter may be omitted (see figures 23 and 24).

A single datum is identified by a capital letter (see figure 25).

A common datum formed by two datum features is identified by two datum letters separated by a hyphen (see figures 26 and 28).

In a datum system (see also 5.11.2) the sequence of two or more datum features is important. The datum letters are to be placed in different compartments, where the sequence from left to right shows the order of priority, and <u>the datum</u> <u>letter placed first should refer to the directional</u> <u>datum feature</u> (see figures 27, 29 and 30).

5.11.2 Datum system

A datum system is a group of two or more datums to which one toleranced feature refers in common. A datum system is frequently required because the <u>direction</u> of a <u>short axis</u> cannot be determined alone. Datum formed by two form features (common

datum):

Datum system formed by two datums (short axis "A" and directional datum "B"):

Datum system formed by one plane and one perpendicular axis of a cylinder:

Datum "A" is the plane formed by the plane contact surface. Datum "B" is the axis of the largest inscribed cylinder, the axis being at right angles with datum "A" (see figure 30).

larity tolerance specified within the tolerance frame (see figures 31 and 32).

5.12 Theoretically exact dimensions

If tolerances of position or angularity are prescribed for a feature, the dimensions determining the theoretically exact position or angle shall not be toleranced.

These dimensions are enclosed, for example 30. The corresponding actual dimensions of the part are subject only to the position tolerance or angu-

5.13 Detailed definitions of tolerances

Geometrical Tolerancing

Symbol	Definition of the tolerance zone	Indication and interpretation		
	5.13.4 Cylindricity tolerance			
	The tolerance zone is limited by two coaxial cylinders a distance t apart.	The considered surface area shall be contained between two coaxial cylinders 0.1 apart		
\square				
	Figure 45	Figure 46		
	5.13.5 Parallelism tolerance			
	Parallelism tolerance of a line with referer	nce to a datum line		
	The tolerance zone when projected in a plane is limited by two parallel straight lines a distance t apart and parallel to the datum line, if the tolerance zone is only specified in one direction.	The toleranced axis shall be contained between two straight lines 0.1 apart, which are parallel to the datum axis A and lie in the vertical direction (see figures 48 and 49).		
	Figure 47	Figure 48 Figure 49		
	t	The toleranced axis shall be contained between two straight lines 0.1 apart, which are parallel to the datum axis A and lie in the horizontal direction.		
//				
//	Figure 50			
//	Figure 50	Figure 51		
//	Figure 50 The tolerance zone is limited by a parallel- epiped of section $t_1 \cdot t_2$ and parallel to the datum line if the tolerance is specified in two planes perpendicular to each other.	Figure 51 The toleranced axis shall be contained in a parallelepipedic tolerance zone having a width of 0.2 in the horizontal and 0.1 in the vertical direction and which is parallel to the datum axis A (see figures 53 and 54).		
//	Figure 50 The tolerance zone is limited by a parallel- epiped of section $t_1 \cdot t_2$ and parallel to the datum line if the tolerance is specified in two planes perpendicular to each other. t_2	Figure 51 The toleranced axis shall be contained in a parallelepipedic tolerance zone having a width of 0.2 in the horizontal and 0.1 in the vertical direction and which is parallel to the datum axis A (see figures 53 and 54).		
//	Figure 50 The tolerance zone is limited by a parallel- epiped of section $t_1 \cdot t_2$ and parallel to the datum line if the tolerance is specified in two planes perpendicular to each other. figure 52	Figure 53 Figure 54		
//	Figure 50 The tolerance zone is limited by a parallel- epiped of section $t_1 \cdot t_2$ and parallel to the datum line if the tolerance is specified in two planes perpendicular to each other. Figure 52	Figure 51 The toleranced axis shall be contained in a parallelepipedic tolerance zone having a width of 0.2 in the horizontal and 0.1 in the vertical direction and which is parallel to the datum axis A (see figures 53 and 54). $figure 53$ Figure 53 Figure 54		

Geometrical Tolerancing

Technical Drawings Geometrical Tolerancing

Geometrical Tolerancing

Geometrical Tolerancing

Technical Drawings Geometrical Tolerancing

Geometrical Tolerancing

Figure 106

Technical Drawings Sheet Sizes, Title Block, Non-standard Formats

Technical drawings [extract from DIN 476 sentation of drawing forms even if they are (10.76) and DIN 6671 Part 6 (04.88)] created by CAD. This standard may also be used for other technical documents. The sheet sizes

6. Sheet sizes

listed below have been taken from DIN 476 and The DIN 6771 standard Part 6 applies to the pre-DIN 6771 Part 6.

Table 3

Sheet sizes acc. to DIN 476, A series	Trimmed sheet a x b	Drawing area 1) a ₁ x b ₁	Untrimmed sheet $a_2 x b_2$
A0	841 x 1189	831 x 1179	880 x 1230
A1	594 x 841	584 x 831	625 x 880
A2	420 x 594	410 x 584	450 x 625
A3	297 x 420	287 x 410	330 x 450
A4	210 x 297	200 x 287	240 x 330

1) The actually available drawing area is reduced by the title block, the filing margin, the possible sectioning margin, etc.

6.1 Title block

Formats \geq A3 are produced in broadside. The title block area is in the bottom right corner of the trimmed sheet. For the A4 format the title block area is at the bottom of the short side (upright format).

6.2 Non-standard formats

Non-standard formats should be avoided. When dimensions of the short side of an A-format with necessary they should be created using the the long side of a greater A-format.

Drawings Suitable for Microfilming

7. General

In order to obtain perfect microfilm prints the following recommendations should be adhered to:

7.1 Indian ink drawings and CAD drawings show the best contrasts and should be preferred for this reason.

7.2 Pencil drawings should be made in special cases only, for example for drafts. Recommendation:

2H-lead pencils for visible edges, letters and dimensions;

3H-lead pencils for hatching, dimension lines and hidden edges.

9. Type sizes

Table 4: Type sizes for drawing formats (h = type height, b = line width)

	Paper sizes									
Application range for lettering	A0 ar	nd A1	A2, A3 and A4							
	h	b	h	b						
Type, drawing no.	10	1	7	0.7						
Texts and nominal dimensions	5	0.5	3.5	0.35						
Tolerances, roughness values, symbols	3.5	0.35	2.5	0.25						

9.1 The type sizes as assigned to the paper sizes in table 4 must be adhered to with regard to their application range. Larger type heights are

also permissible. Type heights smaller by approx. 20% will be accepted if this is required in a drawing because of restricted circumstances.

10. Lines according to DIN 15 Part 1 and Part 2

Table 5: Line groups, line types and line widths		
Line group	0.5	0.7
Drawing format	A4, A3, A2	A1, A0
Line type	Line	width
Solid line (thick)	0.5	0.7
Solid line (thin)	0.25	0.35
Short dashes (thin)	0.25	0.35
Dot-dash line (thick)	0.5	0.7
Dot-dash line (thin)	0.25	0.35
Dash/double-dot line (thin)	0.25	0.35
Freehand (thin)	0.25	0.35

8. Lettering

For the lettering - especially with stencil - the vertical style standard lettering has to be used acc. to DIN 6776 Part 1, lettering style B, vertical (ISO 3098). In case of manual lettering the vertical style or sloping style standard lettering may be used according to DIN 6776 Part 1, lettering style B (ISO 3098).

8.1 The minimum space between two lines in a drawing as well as for lettering should be at least once, but better twice the width of a line in order to avoid merging of letters and lines in case of reductions.

Technical Drawings Drawings Suitable for Microfilming

10.1 Line groups 0.5 and 0.7 with the pertaining

line width according to table 5 may only be used. Assignment to the drawing formats A1 and A0 is prescribed. For the A4, A3 and A2 formats, line group 0.7 may be used as well.

11. Indian ink fountain pen

The use of the type sizes according to table 4 and the lines according to table 5 permits a restricted number of 5 different fountain pens (line widths 0.25; 0.35; 0.5; 0.7; 1 mm).

12. Lettering examples for stenciling and handwritten entries

12.1 Example for formats A4 to A2

Table of Contents Section 2

Standardization	Page
ISO Metric Screw Threads (Coarse Pitch Threads)	43
ISO Metric Screw Threads (Coarse and Fine Pitch Threads)	44
Cylindrical Shaft Ends	45
ISO Tolerance Zones, Allowances, Fit Tolerances; Inside Dimensions (Holes)	46
ISO Tolerance Zones, Allowances, Fit Tolerances; Outside Dimensions (Shafts)	47
Parallel Keys, Taper Keys, and Centre Holes	48

Standardization ISO Metric Screw Threads (Coarse Pitch Threads)

ISO metric screw threads (coarse pitch threads) following DIN 13 Part 1, 12.86 edition													
Nut $D_1 d = 2 H_1$													
т	-			}	/////·		ار	1 u	- 11 ₁				
f			+++++		+++++,		a ₂	$_2$ D_2	d = 0.64	4952 P			
	ì	Ī		$(\mathbf{A}^{60} \mathbf{A})$		ĪĪ	d ₃	, d = 1	.22687 F)			
т	+	= \	<i> </i>	<u> </u>	/ 60° / 1		н	0.866	03 P				
			$\langle / / / \rangle$		TT A			0.000	001				
		<u> </u>	K			++	H.	1 0.54 ⁻	127 P				
1		- =	HHII		\mathbb{A}		h,	0.613	343 P				
	i			P		စ်စိုပါ	3	,					
Nut thread diameter Bolt thread diameter 0.14434 P													
	Nut thre	ad diamet	ter		Bolt the	ead diame	er	0					
Diameters of series 1 should be preferred to those of series 2, and these again to those of series 3.													
Nominal thread Ditch Tensile													
No	minal thre	ead	Pitch	Pitch	Core d	ameter	Depth o	f thread	Round	stress			
	diameter		1 1011	diameter	oure u		Dopuro	anoud	litounu	Cross-			
	4 0		Б		d		h		Б				
.		o · · ·	Р	$a_2 = D_2$	a ₃	U ₁	n ₃	H ₁	к	A _S ')			
Series 1	Series 2	Series 3	mm	mm	mm	mm	mm	mm	mm	mm∠			
3			0.5	2.675	2.387	2.459	0.307	0.271	0.072	5.03			
	3.5		0.6	3.110	2.764	2.850	0.368	0.325	0.087	6.78			
4			0.7	3.545	3.141	3.242	0.429	0.379	0.101	8.7			
	4.5		0.75	4.013	3.580	3.688	0.460	0.406	0.108	11.3			
5			0.8	4.480	4.019	4.134	0.491	0.433	0.115	14.2			
6			1	5.350	4.773	4.917	0.613	0.541	0.144	20.1			
		7	1	6.350	5.773	5.917	0.613	0.541	0.144	28.9			
8			1.25	7.188	6.466	6.647	0.767	0.677	0.180	36.6			
		9	1.25	8.188	7.466	7.647	0.767	0.677	0.180	48.1			
10			1.5	9.026	8.160	8.376	0.920	0.812	0.217	58.0			
		11	1.5	10.026	9.160	9.376	0.920	0.812	0.217	72.3			
12			1.75	10.863	9.853	10.106	1.074	0.947	0.253	84.3			
	14		2	12.701	11.546	11.835	1.227	1.083	0.289	115			
16			2	14.701	13.546	13.835	1.227	1.083	0.289	157			
	18		2.5	16.376	14.933	15.294	1.534	1.353	0.361	193			
20			2.5	18.376	16.933	17.294	1.534	1.353	0.361	245			
	22		2.5	20.376	18.933	19.294	1.534	1.353	0.361	303			
24			3	22.051	20.319	20.752	1.840	1.624	0.433	353			
	27		3	25.051	23.319	23.752	1.840	1.624	0.433	459			
30			3.5	27.727	25.706	26.211	2.147	1.894	0.505	561			
	33		3.5	30.727	28.706	29.211	2.147	1.894	0.505	694			
36			4	33.402	31.093	31.670	2.454	2.165	0.577	817			
	39		4	36.402	34.093	34.670	2.454	2.165	0.577	976			
42			4.5	39.077	36.479	37.129	2.760	2.436	0.650	1121			
	45		4.5	42.077	39.479	40.129	2.760	2.436	0.650	1306			
48			5	44.752	41.866	42.587	3.067	2.706	0.722	1473			
	52		5	48.752	45.866	46.587	3.067	2.706	0.722	1758			
56			5.5	52.428	49.252	50.046	3.374	2.977	0.794	2030			
	60		5.5	56.428	53.252	54.046	3.374	2.977	0.794	2362			
64			6	60.103	56.639	57.505	3.681	3.248	0.866	2676			
04			-										

1) The tensile stress cross-section is calculated acc. to DIN 13 Part 28 with formula

 $\frac{\mathsf{d}_2 + \mathsf{d}_3}{2}$

 $A_s = \frac{\pi}{4}$

Standardization

ISO Metric Screw Threads (Coarse and Fine Pitch Threads)

Select	ion of n 1	ominal mm to	thread dia 68 mm di	ameters ameter,	and pit followi	tches fo ng DIN ′	r coars 13 Part	e and fi 12, 10.8	ne pitch 8 editio	n thread	s from
Nor	ninal thr diamete d = D	ead r	Coarse pitch			Pitches	P for fir	ne pitch	threads		
Series 1	Series 2	Series 3	thread	4	3	2	1.5	1.25	1	0.75	0.5
1 1.2	1.4		0.25 0.25 0.3								
1.6 2	1.8		0.35 0.35 0.4								
2.5 3	2.2		0.45 0.45 0.5								
4 5	3.5		0.6 0.7 0.8								0.5 0.5
6 8 10			1 1.25 1.5					1.25	1 1	0.75 0.75 0.75	0.5 0.5
12	14	15	1.75 2				1.5 1.5 1.5	1.25 1.25	1 1 1		
16	18	17	2 2.5			2	1.5 1.5		1 1 1		
20 24	22		2.5 2.5 3			2 2 2	1.5 1.5 1.5		1 1 1		
	27	25 26	3			2	1.5 1.5 1.5				
30		28 32	3.5			2	1.5 1.5 1.5				
36	33	35	3.5 4		3	2 2	1.5 1.5 1.5				
	39	38 40	4		3	2	1.5 1.5				
42 48	45		4.5 4.5 5		3 3 3	2 2 2	1.5 1.5 1.5				
	52	50 55	5		3	2 2	1.5 1.5 1.5				
56	60	58	5.5 5.5	4	3 3	2 2	1.5 1.5 1.5				
64	68	65	6 6	4	3 3	2 2 2					

Standardization Cylindrical Shaft Ends

Cylindrical shaft ends									Cylindrical shaft ends							
	Acc. 1	to DIN .70 ec	N 748/1 lition	3	Fl worł V 5.8	ENDE s stand V 0470 32 editio	R lard on		Acc. to DIN 748/1, 1.70 edition					FLENDER works standard W 0470, 5.82 edition		
Dian Sei	neter ries	ISO toler-	Len	gth	Dia-	Dia- Length		Dian Sei	neter ries	ISO toler- ance	Len	gth	Dia-	Length	ISO toler- ance	
1	2	zone	Long	Short	meter		zone	1	2	zone	Long	Short	motor		zone	
mm	mm		mm	mm	mm	mm		mm	mm		mm	mm	mm	mm		
6			16					100			210	165	100	180	m6	
7			16					110			210	165	110		-	
8 9			20 20					120	130		210 250	165 200	120 130	210		
10			23	15				140			250	200	140	240		
11			23	15					150		250	200	150	240	-	
12			30	18				160	170		300 300	240 240	160 170	270		
14 16			30 40	18 28	14 16	30		180	100		300	240	180	210	-	
19			40	28	19			200	190		350	280	200	310		
20 22		k6	50 50	36 36	20 22	35	k6	220			350	280	220	350	-	
24			50	36	24	40		050	240		410	330	240	100		
25			60	42	25			250	260		410	330	250 260	400		
28 30			60 80	42 58	28 30	50		280		m6	470	380	280	450	n6	
32 35 38			80 80 80	58 58	32 35 38	60		320	300	mo	470 470	380 380	300 320	500	_	
40			110	00	40		-		340		550	450	340	550		
40 42			110	82 82	40 42	70		360	380		550 550	450 450	360 380	590		
45 48 50			110 110 110	82 82 82	45 48 50	80	m6	400	420		650 650	540 540	400 420	650	-	
55			110	82	55	90			440		650	540	440	690		
60 65			140 140	105 105	60 65	105		450	460		650 650	540 540	450 460	750	-	
70 75		m6	140 140	105 105	70 75	120		500	480		650 650	540 540	480 500	790		
80 85			170 170	130 130	80 85	140		560	530		800 800	680 680				
90 95			170 170	130 130	90 95	160		630	600		800 800	680 680				

Standardization

ISO Tolerance Zones, Allowances, Fit Tolerances Inside Dimensions (Holes)

	ISO	toler acc	ance c. to	zon DIN 7	es, a 7157,	llowa 1.66	ance: edit	s, fit ion; l	toler DIN I	ance SO 2	s; In 86 P	side art 2	dime , 11.9	ensio 0 ed	ns (h ition	noles	5)	
	μm																	
	+ 500							Tala	ranaa		abour	for	1					
	+ 400							non	ninal d	imensi	on 60	mm						
	+ 300																	
	+ 200																	
	+ 100																	
	0					_												
	- 100																	
	- 200																	
	- 300																	
	- 400																	
	- 500																	
																	_	
ISO abbrev.	Series 1 Series 2	P7	N7	N9	M7	K7	J6	J7	H7	H8	H11	G7	F8	E9	D9	D10	C11	A11
from to	1 3	- 6 -16	- 4 -14	- 4 -29	- 2 -12	0 -10	+ 2	+ 4	+10	+14	+ 60	+12 + 2	+ 20	+ 39 + 14	+ 45 + 20	+ 60 + 20	+120	+330
above	3	- 8 -20	- 4 -16	0	0	+ 3	+ 5	+ 6	+12	+18	+ 75	+16	+ 28	+ 50	+ 60	+ 78	+145	+345
above	6 10	- 9	- 4	0	0	+ 5	+ 5	+ 8	+15	+22	+ 90	+20	+ 35	+ 61	+ 76	+ 98	+170	+370
above	10	-24	-13	-30	-13	-10	- +	- 1	.40	.07	. 440	+ 04	+ 13	+ 25	+ +0	+ +0	+ 00	+200
above	14	-29	-23	-43	-18	-12	+ 6 - 5	- 8	0	+27	0	+24	+ 16	+ 32	+ 50	+ 50	+ 95	+290
above	18		_	_														
to above	24 24	-14 -35	- 7 -28	0 -52	0 21	+ 6 -15	+ 8 - 5	+12 - 9	+21	+33	+130	+28 + 7	+ 53 + 20	+ 92 + 40	+117 + 65	+149 + 65	+240 +110	+430 +300
to above	30 30																+280	+470
to above	40 40	-17 -42	- 8 -33	0 -62	0 -25	+ 7 -18	+10 - 6	+14 -11	+25 0	+39 0	+160 0	+34 + 9	+ 64 + 25	+112 + 50	+142 + 80	+180 + 80	+120 +290	+310
to above	50 50																+130	+320
E above	65 65	-21 -51	- 9 -39	0 -74	0 -30	+ 9 21	+13 - 6	+18 -12	+30 0	+46 0	+190 0	+40 +10	+ 76 + 30	+134 + 60	+174 +100	+220 +100	+140	+340
to above	80 80																+150	+360
to to	100	-24 -59	-10 -45	0 -87	0 -35	+10 -25	+16 - 6	+22	+35 0	+54 0	+220	+47 +12	+ 90 + 36	+159 + 72	+207 +120	+260 +120	+170	+380
	120						-		-		-						+180	+410
	140	20	10	0	0	.12	.10	1.26	. 40	.62	. 250	. 5 4	106	. 195	1245	1205	+200	+460
Z to	160	-28 -68	-52	-100	-40	-28	- 7	-14	+40	+03	+250	+14	+ 43	+ 85	+245	+305	+460	+520
above to	160 180																+480 +230	+830 +580
above to	180 200																+530 +240	+950 +660
above to	200 225	-33 -79	-14 -60	0 -115	0 -46	+13 -33	+22 - 7	+30 -16	+46 0	+72 0	+290 0	+61 +15	+122 + 50	+215 +100	+285 +170	+355 +170	+550 +260	+1030 + 740
above to	225 250																+570 +280	+1110
above to	250 280	-36	-14	0	0	+16	+25	+36	+52	+81	+320	+69	+137	+240	+320	+400	+620 +300	+1240
above	280 315	-88	-66	-130	-52	-36	- 7	-16	0	0	0	+17	+ 56	+110	+190	+190	+650	+1370
above	315		_16	0	0	±17	130	T30	157	190	1360	175	+151	1265	1350	+440	+720	+1560
above	355	-98	-73	-140	-57	-40	- 7	-18	0	0	-300	+18	+ 62	+125	+210	+210	+760	+1710
above	400	45	47	_	_						. 400					. 400	+400	+1300
to above	450 450	- 45 -108	-17 -80	0 -155	0 -63	+18 -45	+33 - 7	+43 -20	+63 0	+97 0	+400	+83 +20	+165 + 68	+290 +135	+385 +230	+480 +230	+440	+1500
to ISO	500 Series 1								H7	H8			F8	E9		D10	+480 C11	+1650
abbrev.	Series 2	P7	N7	N9	M7	K7	J6	J7			H11	G7			D9	210		A11

Standardization

ISO Tolerance Zones, Allowances, Fit Tolerances Outside Dimensions (Shafts)

	ISO t	oler: ac	anco c. to	e zo o Dl	nes N 7'	, al 157	low , 1.	/an 66	ces edi	s, fi tioi	t to n; D	lerar IN IS	nce SO 1	s; (286	Dut 5 Pa	side art 2	dim , 11.	iens 90 e	sions ditic	s (sh on	afts)	
	μm																						
	+ 500										Т	olerar	nce z	zone	s sh	own f	or						
	+ 400										r	nomina	al dir	men	sion	60 m	m						
	+ 300																						
	+ 200																						
	+ 100																						
	0																						
	- 100																						
	- 200																						
	- 300																						
	- 400																	-					
	- 500																						
ISO	Series 1	x8/u8			r6	n6							h6			h9			f7				
abbrev.	Series 2	1)	s6 + 20	r5 + 14	+ 16	+10	m5 + 6	m6	k5 + ∕	k6 + €	j6 + ^	js6	0	h7	h8	0	h11	g6	_ 6	e8	d9	c11	a11
to	3	+ 20	+ 14	+ 10	+ 10	+ 4	+ 2	+ 2	0	0	- 2	- 3	- 6	-10	-14	- 25	- 60	- 8	- 16	- 28	- 45	-120	-330
to	6	+ 46 + 28	+ 27 + 19	+ 20 + 15	+ 23 + 15	+ 16 + 8	+ 9 + 4	+12	+ 0 + 1	+ 9 + 1	- 2	+ 4	- 8	-12	-18	- 30	- 75	- 4 -12	- 22	- 38	- 30 - 60	- 70 -145	-270
above to	e 6 10	+ 56 + 34	+ 32 + 23	+ 25 + 19	+ 28 + 19	+19 +10	+12 + 6	+15 + 6	+ 7 + 1	+10 + 1	+ 7 - 2	+4.5 -4.5	0 - 9	0 -15	0 -22	0 - 36	0 - 90	- 5 -14	- 13 - 28	- 25 - 47	- 40 - 76	- 80 -170	-280 -370
above to	10 14	+ 67 + 40	+ 39	+ 31	+ 34	+23	+15	+18	+ 9	+12	+ 8	+5.5	0	0	0	0	0	- 6	- 16	- 32	- 50	- 95	-290
above to	e 14 18	+ 72 + 45	+ 28	+ 23	+ 23	+12	+ 7	+ 7	+ 1	+ 1	- 3	-5.5	-11	-18	-27	- 43	-110	-17	- 34	- 59	- 93	-205	-400
above to	e 18 24	+ 87 + 54	+ 48	+ 37	+ 41	+28	+17	+21	+11	+15	+ 9	+6.5	0	0	0	0	0	- 7	- 20	- 40	- 65	-110	-300
above to	e 24 30	+ 81 + 48	+ 35	+ 28	+ 28	+15	+ 8	+ 8	+ 2	+ 2	- 4	-6.5	-13	-21	-33	- 52	-130	-20	- 41	- 73	-117	-240	-430
above	30 40	+ 99	+ 59	+ 45	+ 50	+33	+20	+25	+13	+18	+11	+8	0	0	0	0	0	- 9	- 25	- 50	- 80	-120 -280	-310 -470
above	e 40	+109	+ 43	+ 34	+ 34	+17	+ 9	+ 9	+ 2	+ 2	- 5	-8	-16	-25	-39	- 62	-160	-25	- 50	- 89	-142	-130 -290	-320
above	50	+133	+ 72	+ 54	+ 60	120	124	130	. 15	1.21	+12	10.5	0	0	0	0	0	10	20	60	100	-140	-340
E above	65	+148	+ 78	+ 56	+ 62	+20	+11	+11	+ 2	+ 2	- 7	-9.5	-19	-30	-46	- 74	-190	-29	- 60	-106	-174	-150	-360
E to ⊆ above	80	+102	+ 93	+ 43	+ 43																	-340	-380
S above	100	+124	+ 71	+ 51	+ 51	+45 +23	+28 +13	+35 +13	+18 + 3	+25 + 3	+13	+11 -11	-22	-35	-54	- 87	-220	-12 -34	- 36 - 71	- 72 -126	-120 -207	- <u>390</u> -180	-600 -410
E to	120	+144 +233	+ 79 +117	+ 54 + 81	+ 54 + 88																	-400 -200	-630 -460
e to e above	140 140	+170 +253	+ 92 +125	+ 63 + 83	+ 63 + 90	+52	+33	+40	+21	+28	+14	+12.5	0	0	0	0	0	-14	- 43	- 85	-145	-450 -210	-710 -520
E to Z above	160 160	+190 +273	+100 +133	+ 65 + 86	+ 65 + 93	+27	+15	+15	+ 3	+ 3	-11	-12.5	-25	-40	-63	-100	-250	-39	- 83	-148	-245	-460 -230	-770 -580
to above	180 180	+210 +308	+108 +151	+ 68 + 97	+ 68 +106																	-480 -240	-830 -660
to above	200	+236	+122	+ 77	+ 77 +109	+60	+37	+46	+24	+33	+16	+14.5	0	0	0	0	0	-15	- 50	-100	-170	-530 -260	-950 - 740
to	225	+258	+130	+ 80	+ 80	+31	+17	+17	+ 4	+ 4	-13	-14.5	-29	-46	-72	-115	-290	-44	- 96	-172	-285	-550	-1030
to	250	+284	+140	+ 84	+ 84																	-570	-1100
to	280	+315	+158	+ 94	+ 94	+66	+43	+52	+27	+36	+16	+16	0	0	0	0	0	-17 -49	- 56	-110	-190	-620	-1240
to	280 315	+431 +350	+202	+ 121	+ 98	1.04	-20	-20	r 4	. 4	-10	-10	-32	-52	-01	-130	-520	-43	-100	-191	-520	-330 -650	-1050
to	315	+479 +390	+226	+133	+144	+73	+46	+57	+29	+40	+18	+18	0	0	0	0	0	-18	- 62	-125	-210	-360 -720	-1200 -1560
above to	355 400	+524 +435	+244 +208	+139 +114	+150 +114	+37	+21	+21	+ 4	+ 4	-18	-18	-36	-57	-89	-140	-360	-54	-119	-214	-350	-400 -760	–1350 –1710
above to	400 450	+587 +490	+272 +232	+153 +126	+166 +126	+80	+50	+63	+32	+45	+20	+20	0	0	0	0	0	-20	- 68	-135	-230	-440 -840	-1500 -1900
above to	450 500	+637 +540	+292 +252	+159 +132	+172 +132	+40	+23	+23	+ 5	+ 5	-20	-20	-40	-63	-97	-155	-400	-60	-131	-232	-385	-480 -880	-1650 -2050
ISO abbrev.	Series 1 Series 2	x8/u8 1)	s6	r5	r6	n6	m5	m6	k5	k6	j6	is6	h6	h7	h8	h9	h11	q6	f7	e8	d9	c11	a11

1) Up to nominal dimension 24 mm: x8; above nominal dimension 24 mm: u8

47

Standardization Parallel Keys, Taper Keys, and Centre Holes

Parallel		Dimensions of parallel keys and taper keys												
Editions		е	ns, se	ength	L	h of ay in	Dept keyw	Depth of key-	Height	Width	eter	Diam		
Side fitting sq			IOW	bei		ıb	ĥι	shaft						
Amon			I	I	l ₁	1	t ₂	t ₁	h	b		d		
			IN	DI		N	DI							
1000000		6886		5/1	688	6887	6885/1		2)	1)	to	above		
L		to	from	to	from	2)								
		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm		
Parallel key and		20	6	20	6	0.5	1.0	1.2	2	2	8	6		
		30 45	10	30 45	8	1.2	1.4	2.5	3	4	10	10		
Square and		56	12	56	10	1.7	2.3	3	5	5	17	12		
timon		70	16	70	14	2.2	2.8	3.5	6	6	22	17		
1:100		110	25	110	22	2.4	3.3	5	8	10	38	30		
1000000		32 140		140	28	2.4	3.3	5	8	12	44	38		
L		160	40	160	36	2.9	3.8	5.5	9	14	50	44		
		200	45 50	200	45 50	3.4	4.3	6 7	11	18	58 65	50 58		
Taper and		220	56	220	56	3.9	4.9	7.5	12	20	75	65		
Keyway ac		250	63	250	63	4.4	5.4	9	14	22	85	75		
The tolerance	1)	320	80	320	80	5.4	6.4	10	16	28	110	95		
with close fit IS	1	360	90	360	90	6.4	7.4	11	18	32	130	110		
shaft keyway v		400 400	100	400	100	7.1	8.4 9.4	12	20	36 40	150 170	130		
and with close	1	400	125	400	125	9.1	10.4	15	25	45	200	170		
Dimension h	2)	400	140	400	140	10.1	11.4	17	28	50	230	200		
largest depth				400	160	11.1	12.4	20	32	56	260	230		
keyway and		gths	Leng	400	200	13.1	14.4	20	36	70	330	200		
head - are equ		ot er-	5.4 14.1 220 400 not		15.4	25	40	80	380	330				
noud all oqu		ned	mir	400	250 280	16.1	17.4 19.5	28	45 50	380 440 90 45 440 500 100 50				
2 36 40 4	3	5 28	2 25	0 2	18 2	16	2 14	10 1	6 8	mm	aths	Ler		
l ₁ or l 90 100 110 125 140 160 180 200 220 250 280 32														
entre holes	Ce			;	noles	entre l	60° ce	ons of	nensi	Dir				
shaft ends (cen	ım	linim	Ν					Bore	hab	nmor	Recor			

Parallel keys and taper keys acc. to DIN 6885 Part 1, 6886 and 6887 Editions: 08.68 12.67 4.68
Side fitting square and rectangular keys
Parallel key and keyway acc. to DIN 6885 Part 1
Square and rectangular taper keys
Taper and round-ended sunk key and keyway acc. to DIN 6886
 The tolerance zone for hub keyway width b for parallel keys with normal fit is ISO JS9 and with close fit ISO P9. The tolerance zone for shaft keyway width b with normal fit is ISO N9 and with close fit ISO P9.
2) Dimension h of the taper key names the largest height of the key, and dimension t_z the largest depth of the hub keyway. The shaft keyway and hub keyway dimensions according to DIN 6887 - taper keys with gib head - are equal to those of DIN 6886.

Table of Contents Section 3

Physics	Page
Internationally Determined Prefixes	50
Basic SI Units	50
Derived SI Units	51
Legal Units Outside the SI	51
Physical Quantities and Units of Lengths and Their Powers	52
Physical Quantities and Units of Time	53
Physical Quantities and Units of Mechanics	53/55
Physical Quantities and Units of Thermodynamics and Heat Transfer	55/56
Physical Quantities and Units of Electrical Engineering	56
Physical Quantities and Units of Lighting Engineering	57
Different Measuring Units of Temperature	57
Measures of Length and Square Measures	58
Cubic Measures and Weights	59
Energy, Work, Quantity of Heat	59
Power, Energy Flow, Heat Flow	60
Pressure and Tension	60
Velocity	60
Equations for Linear Motion and Rotary Motion	61

Physics Internationally Determined Prefixes Basic SI Units

Internationally determined prefixes													
Decimal multiples and sub-multiples of units are represented with prefixes and symbols. Prefixes and symbols are used only in combination with unit names and unit symbols.													
Factor by which the unit is multiplied	Prefix	Symbol		Factor by which the unit is multiplied	Prefix	Symbol							
10 ⁻¹⁸	Atto	а		10 ¹	Deka	da							
10 ⁻¹⁵	Femto	f		10 ²	Hecto	h							
10 ⁻¹²	Pico	р		10 ³	Kilo	k							
10 ⁻⁹	Nano	n		10 ⁶	Mega	М							
10 ⁻⁶	Micro	μ		10 ⁹	Giga	G							
10 ⁻³	Milli	m		10 ¹²	Tera	Т							
10 ⁻²	Centi	С		10 ¹⁵	Peta	Р							
10 ⁻¹	Deci	d		10 ¹⁸	Exa	Е							

Example: 12 kN

3.94 mm

- Prefix symbols and unit symbols are written - When giving sizes by using prefix symbols and without blanks and together they form the symbol for a new unit. An exponent on the unit symbol also applies to the prefix symbol.

unit symbols, the prefixes should be chosen in such a way that the numerical values are between 0.1 and 1000.

1.2 · 10⁴N

0.00394 m

1401 Pa

Example:

Example:

1	cm ³	= 1	· (1	0-	² m) ³	=	1	•	10 ⁻⁶ m ³	
---	-----------------	-----	------	----	------------------------------	---	---	---	---------------------------------	--

 $1 \,\mu s = 1 \cdot 10^{-6} s$

 10^{6} s⁻¹ = 10^{6} Hz = 1 MHz

- Prefixes are not used with the basic SI unit kilo- gram (kg) but with the unit gram (g).

Milligram (mg), NOT microkilogram (µkg).

instead of 3.1 · 10^{−8}s 31 ns Combinations of prefixes and the following units are not allowed: Units of angularity: degree, minute, second

instead of

instead of

1.401 kPa instead of

Units of time: minute, hour, year, day Unit of temperature: degree Celsius

Basic SI units						
Physical quantity	Basic SI unit			Physical quantity	Basic SI unit	
Physical quantity	Name	Symbol		r nysical quantity	Name	Symbol
Length	Metre	m		T I	Kelvin	к
Mass	Kilo- gram	kg		temperature		
Time	Second	S		Amount of substance	Mole	mol
Electric current	Ampere	А		Luminous intensity	Candela	cd

Physics Derived SI Units Legal Units Outside the SI

Derived SI units having special names and special unit symbols				
Physical quantity	SI unit		Polotion	
Physical quantity	Name	Symbol	Relation	
Plane angle	Radian	rad	1 rad = 1 m/m	
Solid angle	Steradian	sr	$1 \text{ sr} = 1 \text{ m}^2/\text{m}^2$	
Frequency, cycles per second	Hertz	Hz	1 Hz = 1 s ⁻¹	
Force	Newton	N	1 N = 1 kg ⋅ m/s²	
Pressure, mechanical stress	Pascal	Ра	1 Pa = 1 N/m ² = 1 kg/ (m · s ²)	
Energy; work; quantity of heat	Joule	J	$1 \text{ J} = 1 \text{ N} \cdot \text{m} = 1 \text{ W} \cdot \text{s} = 1 \text{ kg} \cdot \text{m}^2/\text{m}^2$	
Power, heat flow	Watt	W	$1 \text{ W} = 1 \text{ J/s} = 1 \text{ kg} \cdot \text{m}^2/\text{s}^3$	
Electric charge	Coulomb	С	1 C = 1 A · s	
Electric potential	Volt	V	$1 V = 1 J/C = 1 (kg \cdot m^2)/(A \cdot s^3)$	
Electric capacitance	Farad	F	$1 \text{ F} = 1 \text{ C/V} = 1 (\text{A}^2 \cdot \text{s}^4)/(\text{kg} \cdot \text{m}^2)$	
Electric resistance	Ohm	Ω	1 Ω = 1 V/A = 1 (kg · m ²)/A ² · s ³)	
Electric conductance	Siemens	S	1 S = 1 Ω^{-1} = 1 (A ² · s ³)/(kg · m ²)	
Celsius temperature	degrees Celsius	°C	1 °C = 1 K	
Inductance	Henry	Н	1 H = 1 V · s/A	

Legal units outside the SI						
Physical quantity	Unit name	Unit symbol	Definition			
Plane angle	Round angle Gon Degree Minute Second	1) gon '2) '2) "2)	1 perigon = 2 π rad 1 gon = (π /200)rad 1° = (π /180)rad 1' = (1/60)° 1" = (1/60)'			
Volume	Volume Litre		1 l = 1 dm ³ = (1/1000) m ³			
Time	Minute Hour Day Year	min 2) h 2) d 2) a 2)	1 min = 60 s 1 h = 60 min = 3600 s 1 d = 24 h = 86 400 s 1 a = 365 d = 8 760 h			
Mass	Ton	t	1 t = 10 ³ kg = 1 Mg			
Pressure	Bar	bar	1 bar = 10 ⁵ Pa			

1) A symbol for the round angle has not yet been internationally determined 2) Do not use with prefixes

Physics Physical Quantities and Units of Lengths and Their Powers

	Physical quantities and units of lengths and their powers						
Symbol	Physical quantity	SI unit Symbol Name	N.: Note L.U.: Further legal units N.A.: Units no longer allowed				
I	Length	m (metre)	N.: Basic unit L.U.: μ m; mm; cm; dm; km; etc. N.A.: micron (μ): 1 μ = 1 μ m Ångström unit (Å): 1 Å = 10 ⁻¹⁰ m				
A	Area	m ² (square metre)	L.U.: mm ² ; cm ² ; dm ² ; km ² are (a): 1 a = 10 ² m ² hectare (ha): 1 ha = 10 ⁴ m ²				
V	Volume	m ³ (cubic metre)	L.U.: mm ³ ; cm ³ ; dm ³ litre (l): 1 l = dm ³				
Н	Moment of area	m ³	N.: moment of a force; moment of resistance L.U.: mm ³ ; cm ³				
Ι	Second mo- ment of area	m ⁴	N.: formerly: geometrical moment of inertia L.U.: mm ⁴ ; cm ⁴				
α,β. γ	Plane angle	rad (radian)	N. : 1 rad + $\frac{1 \text{ m (arc)}}{1 \text{ m (radius)}}$ + $\frac{1 \text{ m}}{1 \text{ m}}$ + 1m m 1 rad 1 degree + 1° + $\frac{\pi}{180}$ rad 90° + $\frac{\pi}{2}$ rad L.U. : µrad, mrad Degree (°) : 1° + $\frac{\pi}{180}$ rad Minute () : 1 + $\frac{1°}{60}$ Second () : 1 + $\frac{1}{60}$ Gon (gon) : 1 gon + $\frac{\pi}{200}$ rad N.A. : Right angle = (L) : 1L + $\frac{\pi}{2}$ rad Centesimal degree (g) : 1g + 1 gon Centesimal minute (°) : 1° + $\frac{1°}{100}$ gon Centesimal second (°°) : 1°° + $\frac{1°}{100}$				
Ω, ω	Solid angle	sr (steradian)	N. : 1 sr + $\frac{1 \text{ m}^2 \text{ (spherical surface)}}{1 \text{ m}^2 \text{ (square of spherical radius)}} + 1 \frac{\text{m}^2}{\text{m}^2}$				

Physics Physical Quantities and Units of Time and of Mechanics

Mass in

relation to the surface

Density

kg/m²

kg/m³

m"

9

		Physical qua	ntities and units of time				
Symbol	Physical quantity	SI unit Symbol Name	N.: Note L.U.: Further legal units N.A.: Units no longer allowed				
t	Time, Period, Duration	s (second)	N.: Basic unit L.U.: ns; μ s; ms; ks Minute (min): 1 min = 60 s Hour (h): 1 h = 60 min Day (d): 1 d = 24 h Year (a): 1 a = 365 d (Do not use prefixes for decimal multiples and sub-multiples of min, h, d, a)				
f	Frequency, Periodic frequency	Hz (Hertz)	L.U.: kHz; MHz; GHz; THz Hertz (Hz): 1 Hz = 1/s				
n	Rotational frequency (speed)	s ⁻¹	 N.: Reciprocal value of the duration of one revolution L.U.: min⁻¹ = 1/min 				
v	Velocity	m/s	L.U.: cm/s; m/h; km/s; km/h 1 km h + <u>1</u> <u>3.6</u> m s				
а	Accelera- tion, linear	m/s ²	N.: Time-related velocity L.U.: cm/s ²				
g	Gravity	m/s ²	N.: Gravity varies locally. Normal gravity (g_n): $g_n = 9.80665 \text{ m/s}^2 \approx 9.81 \text{ m/s}^2$				
ω	Angular velocity	rad/s	L.U.: rad/min				
α	Angular acceleration	rad/s ²	L.U.: °/s ²				
V	Volume flow rate	m ³ /s	L.U.: I/s; I/min; dm ³ /s; I/h; m ³ /h; etc.				
	Physical quantities and units of mechanics						
Symbol	Physical quantity	SI unit Symbol Name	N.: Note L.U.: Further legal units N.A.: Units no longer allowed				
m	Mass	kg (kilogram)	N.: Basic unit L.U.: μg; mg; g; Mg ton (t): 1 t = 1000 kg				
m'	Mass per unit length	kg/m	N.: m' = m/l L.U.: mg/m; g/km; In the textile industry: Tex (tex):1 tex = 10^{-6} kg/m = 1 g/km				

N.: m" = m/A L.U.: g/mm²; g/m²; t/m²

N.: $\varrho = m/V$ L.U.: g/cm³, kg/dm³, Mg/m³, t/m³, kg/l 1g/cm³ = 1 kg/dm³ = 1 Mg/m³ = 1 t/m³ = 1 kg/l

Physics Physical Quantities and Units of Mechanics

	Physical quantities and units of mechanics (continued)							
Symbol	Physical quantity	SI unit Symbol Name	N.: Note L.U.: Further legal units N.A.: Units no longer allowed					
J	Mass moment of inertia; sec- ond mass moment	kg ∙ m²	N.: Instead of the former flywheel effect GD^2 GD^2 in kpm ² now : J + $\frac{GD^2}{4}$ L.U.: g · m ² ; t · m ²					
'n	Rate of mass flow	kg/s	L.U.: kg/h; t/h					
F	Force	N (Newton)	L.U.: μN; mN; kN; MN; etc.; 1 N = 1 kg m/s ² N.A.: kp (1 kp = 9.80665 N)					
G	Weight	N (Newton)	N.: Weight = mass acceleration due to gravity L.U.: kN; MN; GN; etc.					
Μ, Τ	Torque	Nm	L.U.: μNm; mNm; kNm; MNm; etc. N.A.: kpm; pcm; pmm; etc.					
M _b	Bending moment	Nm	L.U.: Nmm; Ncm; kNm etc. N.A.: kpm; kpcm; kpmm etc.					
р	Pressure	Pa (Pascal)	N.: 1 Pa = 1 N/m ² L.U.: Bar (bar): 1 bar = 100 000 Pa = 10^5 Pa µbar, mbar N.A.: kp/cm ² ; at; ata; atü; mmWS; mmHg; Torr 1 kp/cm ² = 1 at = 0.980665 bar 1 atm = 101 325 Pa = 1.01325 bar 1 Torr + $\frac{101325}{760}$ Pa + 133.322 Pa 1 mWS = 9806.65 Pa = 9806.65 N/m ² 1 mmHg = 133.322 Pa = 133.322 N/m ²					
P _{abs}	Absolute pressure	Pa (Pascal)						
Pamb	Ambient atmospher- ic pressure	Pa (Pascal)						
Pe	Pressure above atmos- pheric	Pa (Pascal)	p _e = p _{abs} - p _{amb}					
σ	Direct stress (tensile and compres- sive stress)	N/m ²	L.U.: N/mm ² 1 N/mm ² = 10 ⁶ N/m ²					
τ	Shearing stress	N/m ²	L.U.: N/mm ²					
ε	Extension	m/m	N.: ΔI / I L.U.: μm/m; cm/m; mm/m					
W, A	Work	J (loule)	N.: 1 J = 1 Nm = 1 Ws L.U.: mJ; kJ; MJ; GJ; TJ; kWh 1 kWh = 3.6 MJ					
E, W	Energy		N.A.: kpm; cal; kcal 1 cal = 4.1868 J; 860 kcal = 1 kWh					

Physics Physical Quantities and Units of Mechanics, Thermodynamics and Heat Transfer

	Physical quantities and units of mechanics (continued)						
Symbol	Physical quantity	SI unit Symbol Name	N.: Note L.U.: Further legal units N.A.: Units no longer allowed				
Ρ	·Power	W Watt)	N.: 1 W = 1 J/s = 1 Nm/s L.U.: μW; mW; kW; MW; etc. kJ/s; kJ/h; MJ/h, etc. N.A.: PS; kpm/s; kcal/h				
Q	Heat flow		1 PS = 735.49875 W 1 kpm/s = 9.81 W 1 kcal/h = 1.16 W 1 hp = 745.70 W				
η	Dynamic viscosity	Pa∘s	N.: 1 Pa · s = 1 Ns/m ² L.U.: dPa · s, mPa · s N.A.: Poise (P): 1 P = 0.1 Pa · s				
ν	Kinematic viscosity	m²/s	L.U.: mm ² /s; cm ² /s N.A.: Stokes (St): 1 St = 1/10000 m ² /s 1cSt = 1 mm ² /s				

	Physical quantities and units of thermodynamics and heat transfer						
Symbol	Physical quantity	SI unit Symbol Name	N.: Note L.U.: Further legal units N.A.: Units no longer allowed				
т	Thermody- namic temperature	K (Kelvin)	N.: Basic unit 273.15 K = 0 °C 373.15 K = 100 °C L.U.: mK				
t	Celsius temperature	°C	 N.: The degrees Celsius (°C) is a special name for the degrees Kelvin (K) when stating Celsius temperatures. The temperature interval of 1 K equals that of 1 °C. 				
Q	Heat Quantity of heat	J	1 J = 1 Nm = 1 Ws L.U.: mJ; kJ; MJ; GJ; TJ N.A.: cal; kcal				
а	Tempera- ture conductivity	m²/s	$\begin{array}{l} a + \displaystyle \frac{1}{\mu = c_p} \\ \lambda \left[W/(m \cdot K) \right] &= \mbox{ thermal conductivity} \\ \mu \left[kg/m^3 \right] &= \mbox{ density of the body} \\ c_p \left[J/(kg \cdot K) \right] &= \mbox{ specific heat capacity} \\ at \mbox{ constant pressure} \end{array}$				
н	Enthalpy (Heat con- tent)	J	 N.: Quantity of heat absorbed under certain conditions L.U.: kJ; MJ; etc. N.A.: kcal; Mcal; etc. 				
S	Entropy	J/K	1 J/K = 1 Ws/K = 1 Nm/K L.U.: kJ/K N.A.: kcal/deg; kcal/°K				
α,h	Heat transfer coefficient	W/(m ² · K)	L.U.: W/(cm ² · K); kJ/(m ² · h · K) N.A.: cal/(cm ² · s · grd) kal/(m ² · h · grd) ≈ 4.2 kJ/(m ² · h · K)				

Physics

Physical Quantities and Units of Thermodynamics, Heat Transfer and Electrical Engineering

Phy	Physical quantities and units of thermodynamics and heat transfer (continued)					
Symbol	Physical quantity	SI unit Symbol Name	N.: Note L.U.: Further legal units N.A.: Units no longer allowed			
с	Specific heat capacity	J/(K · kg)	1 J/(K \cdot kg) = W \cdot s / (kg \cdot K) N.: Heat capacity referred to mass N.A.: cal / (g \cdot deg); kcal / (kg \cdot deg); etc.			
α _l	Coefficient of linear thermal expansion	K ⁻¹	$\begin{array}{l} m \ / \ (m \cdot K) = K^{-1} \\ \text{N.:} & \text{Temperature unit/length unit ratio} \\ \text{L.U.:} & \mu m \ / \ (m \cdot K); \ cm \ / \ (m \cdot K); \ mm \ / \ (m \cdot K) \end{array}$			
α _ν , γ	Coefficient of volumetric expansion	K ^{−1}	$\begin{array}{l} m^3 / (m^3 \cdot K) = K^{-1} \\ \text{N.:} \text{Temperature unit/volume ratio} \\ \text{N.A.:} m^3 / (m^3 \cdot \text{deg}) \end{array}$			

Physical quantities and units of electrical engineering						
Symbol	Physical quantity	SI unit Symbol Name	N.: Note L.U.: Further legal units N.A.: Units no longer allowed			
Ι	Current strength	A (Ampere)	N.: Basic unit L.U.: pA; nA; μA; mA; kA; etc.			
Q	Electric- charge; Quantity of electricity	C (Coloumb)	1 C = 1 A · s 1 Ah = 3600 As L.U.: pC; nC; μC; kC			
U	Electric voltage	V (Volt)	1 V = 1 W / A = 1 J / (s · A) = 1 A · Ω = 1 N · m / (s · A) L.U.: μ V; mV; kV; MV; etc.			
R	Electric resistance	Ω (Ohm)	$\begin{array}{l} 1 \ \Omega = 1 \ V \ / \ A = 1 \ W \ / \ A^2 \\ 1 \ J \ / \ (s \cdot A^2) = 1 \ N \cdot m \ / \ (s \cdot A^2) \\ \text{L.U.:} \mu \Omega; \ m \Omega; \ k \Omega; \ \text{etc.} \end{array}$			
G	Electric conductance	S (Siemens)	N.: Reciprocal of electric resistance 1 S = 1 Ω^{-1} = 1 / Ω ; G = 1 / R L.U.: μ S; mS; kS			
С	Electrostatic capacitance	F (Farad)	$\begin{array}{l} 1 \ F = 1 \ C \ / \ V = 1 \ A \cdot s \ / \ V \\ = 1 \ A^2 \cdot s \ / \ W = 1 \ A^2 \cdot s^2 \ / \ J \\ = 1 \ A^2 \cdot s^2 \ (N \cdot m) \\ \text{L.U.:} pF; \ \mu F; \ \text{etc.} \end{array}$			

56

Physics

Physical Quantities and Units of Lighting Engineering, Different Measuring Units of Temperature

	Physical quantities and units of lighting engineering					
Symbol	Physical quantity	SI unit Symbol Name	N.: Note L.U.: Further legal units N.A.: Units no longer allowed			
I	Luminous intensity	cd (Candela)	N.: Basic unit 1 cd = 1 lm (lumen)/sr (Steradian) L.U.: mcd; kcd			
L	Luminous density; Luminance	cd / m ²	L.U.: cd / cm ² ; mcd/m ² ; etc. N.A.: Apostilb (asb); 1 asb $\frac{1}{\pi}$ cd m ² Nit (nt): 1 nt = 1 cd / m ² Stilb (sb): 1 sb = 10 ⁴ cd / m ²			
Φ	Luminous flux	lm (Lumen)	1 lm = 1 cd · sr L.U.: klm			
E	Illuminance	lx (Lux)	$1 \text{ lx} = 1 \text{ lm} / \text{m}^2$			

	Different measuring units of temperature										
Kelvin K T _K	Degrees Celsius °C t _C	Degrees Fahrenheit °F t _F	Degrees Rankine °R T _R								
T_{K} 273.15 + t _c	$t_{\rm C}$ $T_{\rm K} = 273.15$	$t_{F} = \frac{9}{5} T_{K} = 459.67$	$T_{R} = \frac{9}{5} T_{K}$								
$T_{K} = 255.38 + \frac{5}{9} t_{F}$	$t_{C} = \frac{5}{9} t_{F} = 32$	$t_{F} = 32 + \frac{9}{5} t_{C}$	$T_{R} = \frac{9}{5} t_{c} + 273.15$								
Τ _κ 5/9 Τ _R	$t_{\rm C} = \frac{5}{9} T_{\rm R} = 273.15$	t_{F} T_{R} = 459.67	T _R 459.67 + t _F								

Comparison of some temperatures									
0.00	- 273.15	- 459.67	0.00						
+ 255.37	- 17.78	0.00	+ 459.67						
+ 273.15	0.00	+ 32.00	+ 491.67						
+ 273.16 1)	+ 0.01 ¹⁾	+ 32.02	+ 491.69						
+ 373.15 + 100.00 + 212.00 + 671.67									

1) The triple point of water is +0.01 °C. The triple point of pure water is the equilibrium point between pure ice, air-free water and water vapour (at 1013.25 hPa).

Temperature comparison of °F with °C	°F °C +30 + 0 +20 + -10 +10 + -10 +10 + -10 +10 + -10 -10 + -20 -10 + -30 -30 + -30	° F ° C -40 -50 -50 -70 -70 -100 -100 -100 -100 -100 -70 -70 -70 -70 -70 -70 -70 -	°F °C -160	°С 90 111 20 80 10 10 10 50 40 11 10 32 0 10 10	°F °C 160 - 70 150 - 100 - 70 150 - 100 - 100 130 - 100 - 100 100 - 100 - 100 - 100 100 - 100 - 100 100 - 100 - 100 100 - 100 - 100 1	°F °C 300 140 250 1120 210 1110 200 190 190 190 180 191 100 100 190 100 100 100 100	°F °C 2500 1000 1500 800 1500 600 1000 600 1000 600 1000 600 1000 400 1000 100 1000 1000
--	---	--	---------------	---	--	---	---

Physics Measures of Length and Square Measures

			Measures	of length	1			
Unit	Inch in	Foot ft	Yard yd	Stat mile	Naut mile	mm	m	km
1 in = 1 ft = 1 yd = 1 stat mile = 1 naut mile =	1 12 36 63 360 72 960	0.08333 1 3 5280 6080	0.02778 0.3333 1 1760 2027	- - 1 1.152	- - 0.8684 1	25.4 304.8 914.4 – –	0.0254 0.3048 0.9144 1609.3 1853.2	- - 1.609 1.853
1 mm = 1 m = 1 km =	0.03937 39.37 39 370	3.281 · 10 ^{−3} 3.281 3281	1.094 · 10 ^{−3} 1.094 1094	_ _ 0.6214	_ 	1 1000 10 ⁶	0.001 1 1000	10 ^{–6} 0.001 1
 German statt geograph. m equator (1° a internat. nau German nau (sm) mille marin (li 	ute mile = 75 ile = 7420.4 at the equato tical mile tical mile French)	500 m m = 4 arc minut r = 111.307 km) =1852 m minute a longitude ridian = 2	tes at the = 1 arc t the degree of $0(1^{\circ}$ at the me- 111.121 km)	Astronom 1 light-se 1 l.y. (ligh 1 parsec 3.26 l.y 1 astrono the sun Typograp	nical units o econd = 300 nt-year) = 9. (parallax set r_{1} pmical unit (phical unit o	f measure 000 km $46 \cdot 10^{12} \text{ kr}$ econd, dista mean dista 0^8 km f measure:	n ances to the sta nce of the eart 1 point (p) = 0.	ars) = h from 376 mm
Other measure: 1 micro-in = 10 ⁻ 1 mil = 1 thou = 1 line = 0.1 in = 1 fathom = 2 yd 1 engineer's ch 1 rod = 1 perch 1 surveyor's ch 1 furlong = 1000 1 stat league =	s of length o $^{-6}$ in = 0.025 0.001 in = 0 2,54 mm = 1.829 m ain = 100 er = 1 pole = 2 ain = 100 sur 0 surv link = 3 stat miles	f the Imperial sy 4 µm 0.0254 mm 15 surv link = 100 ft = 5 surv link = 5.0 7 v link = 20.12 r 201.2 m = 4.828 km	stem 30.48 m)29 m n	Other me France: 1 toise = Russia: 1 wersch 1 arschin Japan: 1 shaku = 1 ken = 1 1 ri = 3.9	easures of k 1.949 m ok = 44.45 = 0.7112 n = 0.3030 m .818 m 27 km	ength of the 1 m mm 1 sa n 1 w	e metric system yriametre = 10 aschen = 2.133 erst = 1.0668 k	000 m 6 m m

					Sq	uare me	asures					
	Unit		sq in	sq ft	sq yd	sq mile	cm ²	dm ²	m²	а	ha	km ²
1 1 1	1 square inch 1 square foot 1 square yard 1 square mile	= = =	1 144 1296 -	- 1 9 -	_ 0.1111 1 _	- - - 1	6.452 929 8361 -	0.06452 9.29 83.61 –	_ 0.0929 0.8361 _	- - -	_ _ _ 259	_ _ _ 2.59
	1 cm ² 1 dm ² 1 m ² 1 a 1 ha 1 km ²	0.155 15.5 1550 - - -	_ 0.1076 10.76 1076 _ _	1 100 10000 - - -	0.01 1 100 10000 - -	_ 0.01 1 100 10000 _	- 0.01 1 100 10000	- - 0.01 1 100	- - - 0.01 1			
O 1 1 1 1 1 1 1	ther square main sq mil = 1 • 1 sq line = 0.01 sq surveyor's sq rod = 1 sq = 25.29 m ² sq chain = 16 acre = 4 rood township (US circular in = $\frac{\pi}{4}$	easu 0^{-6} s sq i link perc sq i l = 4i l = 4i l = 4i l = 4i l = 3 l = 3 l = 3 l = 3	rises of the sq in = 0. n = 6.452 = 0.0404 ch = 1 sq rod = 4.00 0.47 a 36 sq mile in = 5.06 q mil = 0.	e Imperial 0006452 r 2 mm ² 17 m ₂ pole = 62 47 a 47	system nm ² 5 sq surv lir cm ² cular area w nm ² (circular	ik ith 1 in dia. area with) 1 mil dia.)	Other se system Russia: 1 kwadr 1 kwadr 1 kwadr 1 kwadr Japan: 1 tsubo 1 se 1 ho-ri	quare mea : : archin : saschen atine : werst	= 0. = 4. = 1. = 1. = 3. = 0. = 1!	5058 m ² 5522 m ² 0925 ha 138 km ² 306 m ² 9917a 5.42 km ²	с

Physics Cubic Measures and Weights; Energy, Work, Quantity of Heat

				Cubic	measu	res				
Unit		cu in	cu ft	US liquid quart	US gallon	Imp quart	lmp gallon	cm ³	dm ³ (I)	m ³
1 cu in 1 cu ft 1 cu yd	=	1 1728 46656	- 1 27	0.01732 29.92 807.9	_ 7.481 202	0.01442 24.92 672.8	_ 6.229 168.2	16.39 _ _	0.01639 28.32 764.6	_ 0.02832 0.7646
1 US liquid quart 1 US gallon	=	57.75 231	0.03342 0.1337	1 4	0.25 1	0.8326 3.331	0.2082 0.8326	946.4 3785	0.9464 3.785	-
1 imp quart 1 imp gallon	=	69.36 277.4	0.04014 0.1605	1.201 4.804	0.3002 1.201	1 4	0.25 1	1136 4546	1.136 4.546	
1 cm ³ 1 dm ³ (l) 1 m ³	=	0.06102 61.02 61023	_ 0.03531 35.31	- 1.057 1057	_ 0.2642 264.2	_ 0.88 880	_ 0.22 220	1 1000 10 ⁶	0.001 1 1000	10 ⁶ 0.001 1
$\begin{array}{c} 1 \text{ US minim} = 0.0\\ 1 \text{ US fl dram} = 60\\ 1 \text{ US fl oz} = 8 \text{ fl oz}\\ 1 \text{ US gill} = 4 \text{ fl oz}\\ 1 \text{ US gill} = 4 \text{ fl oz}\\ 1 \text{ US liquid pint} = 1\\ 1 \text{ US liquid pint} = 0\\ 1 \text{ US dry pint} = 0\\ 1 \text{ US dry quart} = 1\\ 1 \text{ US peck} = 8 \text{ dr}\\ 1 \text{ US bushel} = 4\\ 1 \text{ US bushel} = 4\\ 1 \text{ US bushel} = 4\\ 1 \text{ US bushel} = 42\\ 1 \text{ US barrel} = 422\\ 1 \text{ US barrel} = 422\\ 1 \text{ US cord} = 128\end{array}$	0616 0 min $1 = 0= 4 g= 21 = 21 = 32 dry qui y quiy qui 1 = 3gallic cu fi$	cm^{3} (USA) nims = 3.69 is = 0,02957 .1183 I ilis = 0.4732 liquid pints d quarts = 3. 61 y pints = 1. iarts = 8.811 cs = 35.24 I 1.5 gallons ons = 158.8 t = 3.625 m ²	6 cm ³ 2 I = 0.9464 I 785 I 101 I I I = 119.2 I I (for crude		1 Imp min 1 Imp ft di 1 Imp ft o: 1 Imp gill 1 Imp gill 1 Imp qua 1 Imp gall 1 Imp pot 1 Imp bus 1 Imp qua	im = 0.05 rachm = 60 z = 8 ft dra = 5 ft oz = i = 4 gills = irt = 2 pints on = 4 qua tle = 2 qua tle = 2 qua k = 4 pottl hel = 4 pe irter = 8 bu	92 cm^3 (G 0 minims ichm = 0, 0.142 I 0.5682 I s = 1.136 arts = 4.54 arts = 2.22 es = 9.09 cks = 36. ushels = 6	B) = 3.552 cm 22841 l 5 l 461 l 73 l 2 l 37 l 44 gallons =	3 290.94 l	

					Weight	s					
Unit		dram	oz lb		short cwt	long cwt	short ton	long ton	g	kg	t
1 dram	П	1	0.0625	0.003906	-	-	-	-	1.772	0.00177	-
1 oz (ounze)	=	16	1	0.0625	-	-	_	_	28.35	0.02835	_
1 lb (pound)	=	256	16	1	0.01	0.008929	-	-	453.6	0.4536	-
1 short cwt (US) = 25600 1600				100	1	0.8929	0.05	0.04464	45359	45.36	0.04536
1 long cwt (GB/US)	long cwt (GB/US) = 28672 1792 112						0.056	0.05	50802	50.8	0.0508
1 short ton (US) = - 32000				2000	20	17.87	1	0.8929	-	907.2	0.9072
1 long ton (GB/US)	=	-	35840	2240	22.4	20	1.12	1	-	1016	1.016
1g	Π	0.5643	0.03527	0.002205	-	-	-	-	1	0.001	10 ⁻⁶
1kg	=	564.3	35.27	2.205	0.02205	0.01968	-	-	1000	1	0.001
1t	=	-	35270	2205	22.05	19.68	1.102	0.9842	10 ⁶	1000	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										(CIS) (CIS) (CIS) (CIS) (CIS) (CIS) (CIS) (J)	
tdw = tons dead weight = lading capacity of a cargo vessel (cargo + ballast + fuel + stores), mostly given in long tons, i.e. 1 tdw = 1016 kg											

	Energy, work, quantity of heat											
Work		ft Ib	erg	J = Nm = Ws	kpm	PSh	hph	kWh	kcal	Btu		
1 ft lb	=	1	1.356 · 10 ⁷	1.356	0.1383	0.5121 · 10 ⁻⁶	0.505 · 10–6	0.3768 · 10 ⁻⁶	0.324 · 10 ⁻³	1.286 · 10 ⁻³		
1 erg	=	0.7376 · 10 ⁷	1	10 ⁻⁷	0.102 · 10 ⁻⁷	37.77 · 10 ⁻¹⁵	37.25 · 10 ¹⁵	27.78 · 10 ⁻¹⁵	$23.9 \cdot 10^{-12}$	94.84 · 10 ⁻¹²		
1 Joule (WS)	=	0.7376	10 ⁷	1	0.102	377.7 · 10 ⁻⁹	372.5 · 10 ⁻⁹	277.8 · 10 ⁻⁹	238 · 10-6	948.4 · 10 ⁻⁶		
1 kpm	=	7.233	9.807 · 10 ⁷	9.807	1	3.704 · 10 ⁻⁶	3.653 · 10 ⁻⁶	2.725 · 10 ⁻⁶	2.344 · 10 ⁻³	9.301 · 10 ⁻³		
1 PSh	=	1.953 · 10 ⁶	26.48 · 10 ¹²	2.648 · 10 ⁶	270 · 10 ³	1	0.9863	0.7355	632.5	2510		
1 hph	=	1.98 · 10 ⁶	26.85 · 10 ¹²	2.685 · 10 ⁶	273.8 · 10 ³	1.014	1	0.7457	641.3	2545		
1 kŴh	=	2.655 · 10 ⁶	36 · 10 ¹²	3.6 · 10 ⁶	367.1 · 10 ³	1.36	1.341	1	860	3413		
1 kcal	=	$3.087 \cdot 10^{3}$	41.87 · 10 ⁹	4186.8	426.9	1.581 · 10 ⁻³	1.559 · 10 ⁻³	1.163 · 10 ³	1	3.968		
1 Btu	$= 778.6 10.55 \cdot 10^9 1055 107.6 398.4 \cdot 10^{-6} 392.9 \cdot 10^{-6} 293 \cdot 10^{-6} 0.252 1$											
1 in oz =	0.07	72 kpcm; 1 ii	n lb = 0.0833	ft lb = 0.113	Nm, 1 therm	i (French) = 4.	1855 · 10 ⁶ J;	1 therm (Eng	glish) = 105.5	51 · 10 ⁶ J		
		Com	mon in case	of piston end	gines: 1 litre-a	tmosphere (lit	re · atmosphe	re) = 98.067 J				

Physics Power, Energy Flow, Heat Flow, Pressure and Tension, Velocity

-											
	Power, energy flow, heat flow										
	Power		erg/s	W	kpm/s	PS	hp	kW	kcal/s	Btu/s	
	1 erg/s	=	1	10 ⁻⁷	0.102 · 10 ⁻⁷	0.136 · 10 ⁻⁹	0.1341 · 10 ⁻⁹	10 ⁻¹⁰	23.9 · 10 ⁻¹²	94.84 · 10 ⁻¹²	
	1Ŵ	=	10 ⁷	1	0.102	1.36 · 10 ⁻³	1.341 · 10 ⁻³	10 ⁻³	239 · 10 ⁻⁶	948.4 · 10 ⁻⁶	
	1kpm/s	=	$9.807 \cdot 10^{7}$	9.807	1	13.33 · 10 ⁻³	13.15 · 10 ⁻³	9.804 · 10 ⁻³	2.344 · 10 ⁻³	9.296 · 10 ⁻³	
1	PS (ch) 2)	=	$7.355 \cdot 10^{9}$	735.5	75	1	0.9863	0.7355	0.1758	0.6972	
	1hp	=	7.457 · 10 ⁹	745.7	76.04	1.014	1	0.7457	0.1782	0.7068	
	1 kW	=	10 ¹⁰	1000	102	1.36	1.341	1	0.239	0.9484	
	1 kcal/s	=	$41.87 \cdot 10^{8}$	4187	426.9	5.692	5.614	4.187	1	3.968	
	$1 \text{ Btu/s} = 10.55 \cdot 10^9 1055 107.6 1.434 1.415 1.055 0.252 1$										
		1 poncelet (French) = 980.665 W; flywheel effect: 1 kgm ² = 3418 lb in ²									

					Pi	ressui	re and	tensio	n					
Unit		μbar = dN/m²	mbar = cN/ cm ²	bar = daN/ cm ²	kp/m ² mm WS	p/cm ²	kp/cm ² = at	kp/mm ²	Torr= mm QS	atm	lb sq ft	lb sq in	long ton sq in	{sh tor sq in
1 μb=daN 1mbar=cN/cm ²	= =	1 1000	0.001 1	_ 0.001	0.0102 10.2	_ 1.02	-		_ 0.7501	-	_ 2.089	_ 0.0145	-	-
$= daN/cm^2$	=	10 ⁶	1000	1	10197	1020	1.02	0.0102	750.1	0.9869	2089	14.5	0.0064	0.0072
1 kp/m ² =1mm WS at 4 °C	=	98.07	-	-	1	0.1	0.0001	-	-	-	0.2048	-	-	-
1 p/cm ²	=	980.7	0.9807	-	10	1	0.001	-	0.7356	-	2.048	0.0142	-	-
1 kp/cm ² =1at (techn. atmosph.)	=	-	980.7	0.9807	10000	1000	1	0.01	735.6	0.9678	2048	14.22	-	-
1 kp/mm ²	=	-	98067	98.07	10 ⁶	10 ⁵	100	1	73556	96.78	-	1422	0.635	0.7112
1 Torr = 1 mm QS at 0 °C	=	1333	1.333	0.00133	13.6	1.36	0.00136	-	1	-	2.785	0.01934	_	-
1 atm (pressure of the atmosphere)	=	-	1013	1.013	10332	1033	1.033	-	760	1	2116	14.7	-	-
1 lb/sq ft	П	478.8	0.4788	-	4.882	0.4882	-	-	0.3591	-	1	-	-	-
1 lb/sq in=1 psi	=	68948	68.95	0.0689	703.1	70.31	0.0703	-	51.71	0.068	144	1	-	0.0005
1 long ton/sq in (GB)	=	-	-	154.4	-	-	157.5	1.575	-	152.4	-	2240	1	1.12
1 short ton/sq in (US)	=	-	-	137.9	-	-	140.6	1.406	-	136.1	-	2000	0.8929	1

1 psi = 0.00689 N / mm²

1 N/m² (Newton/m²) = 10 μ b, 1 barye (French) = 1 μ b, 1 piece (pz) (French) = 1 sn/m² \approx 102 kp/m². 1 hpz = 100 pz = 1.02 kp/m².

In the USA, "inches Hg" are calculated from the top, i.e. 0 inches Hg = 760 mm QS and 29.92 inches Hg = 0 mm QS = absolute vacuum.

The specific gravity of mercury is assumed to be 13.595 kg/dm³.

			Velocit	y		
Unit		m/s	m/min	km/h	ft/min	mile/h
m/s	=	1	60	3.6	196.72	2.237
m/min	=	0.0167	1	0.06	3.279	0.0373
km/h	=	0.278	16.67	1	54.645	0.622
ft/min	=	0.0051	0.305	0.0183	1	0.0114
mile/h	=	0.447	26.82	1.609	87.92	1

Physics Equations for Linear Motion and Rotary Motion

Definition	SI	Sym-	. Basic formulae						
Demnition	unit	bol	Linear motion	Rotary motion					
Uniform motion			distance moved divided by time	angular velocity = angle of rotation in radian measure/time					
Velocity	m/s	v	$v = \frac{s_2 + s_1}{t_2 + t_1} = \frac{s}{t} = const.$	$\pi = \frac{\varrho_2 + \varrho_1}{t_2 + t_4} = \frac{\varrho}{t} = \text{const.}$					
Angular velocity	rad/s	ω	motion acceler	ated from rest:					
Angle of rotation	rad m/s	ę v	$v = \frac{s}{t}$	$\varrho = \frac{\varrho}{t}$					
Distance moved	m	s	$s = v \cdot t$	angle of rotation $\phi = \omega \cdot t$					
Uniformly accelerated motion			acceleration equals change of velocity divided by time	angular acceleration equals change of angular velocity divided by time					
Acceleration	m/s²	а	$a = \frac{v_2 + v_1}{t_2 + t_1} = \frac{v}{t} = const.$	$\mu = \frac{\pi_2 + \pi_1}{t_2 + t_1} = \frac{\pi}{t} = \text{const.}$					
Angular acceleration	rad/s ²	α	motion accelerated from rest:						
	m/s ²	а	$a = \frac{v}{t} = \frac{v^2}{2s} = \frac{2s}{t^2}$	$\mu = \frac{\pi}{t} = \frac{\pi^2}{2\varrho} = \frac{2\varrho}{t^2}$					
Velocity	m/s	v	$v = a t = \overline{2} a s$	$\pi = \mu t$					
Circumferential speed	m/s	v		$v = r \pi = r \mu t$					
Distance moved	m	s	$s = \frac{v}{2}$ $t = \frac{a}{2}$ $t^2 = \frac{v^2}{2a}$	angle of rotation $ \varrho = \frac{\pi}{2} t = \frac{\mu}{2} t^2 = \frac{\pi^2}{2\mu} $					
Uniform motion and constant force or constant torque			force · distance moved	torque - angle of rotation in radian measure					
Work	J	W	$W = F \cdot s$	$W=M\cdot \varphi$					
			work in unit of time = force velocity	work in unit of time = torque · angular velocity					
Power	W	Ρ	$P = \frac{W}{t} = F v$	$P = \frac{W}{t} = M \pi$					
Non-uniform (accelerated) motion			accelerating force = mass · acceleration	accel. torque = second mass moment · angular acceleration					
Force	Ν	F	F = m · a	$M=J\cdot \alpha$					
In case of any motion			*)	* *)					
Energy	J	E _k	$E_{k} \frac{m}{2} v^2 \qquad \qquad E_{k} = \frac{J}{2} \pi^2$						
Potential energy (due to force of gravity)	J	Ep	weight E _p = G ⋅ h	· height = m · g · h					
Centrifugal force	Ν	F_F	$F_F = m \cdot r_s \cdot \omega^2$ (r_s = centre-of-gravity radius)						

*) Momentum (kinetic energy) equals half the mass · second power of velocity.

**) Kinetic energy due to rotation equals half the mass moment of inertia · second power of the angular velocity.

Table of Contents Section 4

Mathematics/Geometry Calculation of Areas

Mathematics / Geometry	Page
Calculation of Areas	63
Calculation of Volumes	64

	A = area U	= circumference	
Square	$A = a^{2}$ $a \overline{A}$ $d a \overline{2}$	Polygon Market A3 A1 A2 Market A3 A3 Market A3 A3 Market A3 A3 Market A3 A3 Market A3 A3 Market A3 Market	$A A_1 + A_2 + A_3$ $\frac{a h_1 + b h_2 + b h_3}{2}$
	A a b d $\overline{a^2 + b^2}$	Formed area	A $\frac{r^2}{2}(2 \ \overline{3} = \mu)$ 0.16 r^2
	Aah a <u>A</u> h	Circle	A $\frac{d^2 \mu}{4}$ $r^2 \mu$ 0.785 d^2 U 2r μ d μ
	A m h m $\frac{\{a+b\}}{2}$	Circular ring	A $\frac{\mu}{4}$ (D ² = d ²) (d + b) b μ b $\frac{\{D = d\}}{2}$
Triangle	$A = \frac{\{a = h\}}{2}$ $a = \frac{\{2 = A\}}{h}$	Circular sector	$A \frac{r^2 \mu}{360^{\circ}}$ $\frac{\langle b r \rangle}{2}$ $b \frac{\langle r \mu ^{\circ} \rangle}{180^{\circ}}$
Equilateral triangle	A $\frac{a^2}{4}\overline{3}$ d $\frac{a}{2}\overline{3}$	Circular segment	$A \frac{r^2}{2} \frac{\left\{ \begin{array}{c} \circ & \mu \right\}}{180} = \sin \\ \frac{1}{2} [r(b = s) + sh] \\ s 2 r \sin \frac{1}{2} \\ h r \left(1 = \cos \frac{a}{2}\right) \frac{s}{2} \tan \frac{1}{4} \\ \frac{\left\{ \begin{array}{c} \circ & \mu \right\}}{180} \end{array}$
	$\begin{array}{c} A & \frac{1}{2} \\ d & 2 \\ s & \overline{3} \\ a \end{array}$	Ellipse	b r ^ A $\frac{\{D \ d \ \mu\}}{4}$ a b μ U $\frac{\{D + d\}}{2}$ μ
	$A = 2a^{2}(\overline{2} + 1)$ $d = a \overline{4 + 2} \overline{2}$ $s = a(\overline{2} + 1)$		$ \begin{vmatrix} U & \mu (a + b) [1 + \\ \frac{1}{4} \frac{\{a = b\}}{\{a + b\}}^{2} + \frac{1}{64} \frac{\{a = b\}}{\{a + b\}}^{4} \\ + \frac{1}{256} \frac{\{a = b\}}{\{a + b\}}^{6} \\ \vdots \end{bmatrix} $

v	= volume O = surface	M = generated surface			
	$V = a^3$ $O = 6 = a^2$ $d = a = \overline{3}$	Frustum of cone	$V = \frac{\left\{ \pi h \right\}}{12} \left(D^2 + Dd + d^2 \right)$ $M = \frac{\left\{ \pi m \right\}}{2} \left(D + d \right)$ $2\pi \frac{p h}{2}$ $m = \frac{\left\{ D = d \right\}}{2} \frac{2}{2} + h^2$		
Parallelepiped	V a b c O 2 (ab + ac + bc) d $\overline{a^2 + b^2 + c^2}$	Sphere	$V = \frac{4}{3}r^{3}\pi = \frac{1}{6}d^{3}\pi$ 4.189 r ³ $O = 4\pi r^{2} = \pi d^{2}$		
Rectangular block	V A h (Cavalier principle)	Spherical zone	$V = \frac{\{\pi \ h\}}{6}(3a^2 + 3b^2 + h^2)$ M 2 r \pi h		
Pyramid	$V = \frac{\{A = h\}}{3}$	Spherical segment	$V = \frac{\{\pi \ h\}}{6} = \frac{3}{4}s^{2} + h^{2}$ $\pi h^{2} \ r = \frac{h}{3}$ $M = \frac{2}{4}r \ \pi h = \frac{\pi}{4}(s^{2} + 4h^{2})$		
Frustum of pyramid	$V = \frac{h}{3} (A_1 + A_2 + \overline{A_1 - A_2})$ $h = \frac{A_1 + A_2}{2}$	Spherical sector	V $\frac{2}{3}$ h r ² π O $\frac{\{\pi \ r\}}{2}$ (4h + s)		
Cylinder	$V \frac{d^2 \pi}{4} h$ $M 2 r \pi h$ $O 2 r \pi (r+h)$	Cylindrical ring	$V \frac{D \pi^2 d^2}{4}$ $O D d \pi^2$		
Hollow cylinder	V $\frac{\{h \ \pi\}}{4} (D^2 = d^2)$	Cylindrical barrel	$V = \frac{\{h = \pi\}}{12} (2D^2 + d^2)$		
Cone	$V = \frac{r^2 \pi h}{3}$ $M = r \pi m$ $O = r \pi (r + m)$ $m = \sqrt{h^2 + \frac{d}{2}}^2$	Prismatoid A2 A A	$V = \frac{h}{6} (A_1 + A_2 + 4A)$		

Table of Contents Section 5

Mechanics / Strength of Materials	Page
Axial Section Moduli and Axial Second Moments of Area (Moments of Inertia) of Different Profiles	66
Deflections in Beams	67
Values for Circular Sections	68
Stresses on Structural Members and Fatigue Strength of Structures	69

Mechanics / Strength of Materials Axial Section Moduli and Axial Second Moments of Area (Moments of Inertia) of Different Profiles

Cross-sectional area	Section modulus	Second moment of area
	W_1 bh ² 6 W_2 hb ² 6	₁ bh ³ 12 ₂ hb ³ 12
	W ₁ W ₂ a ³ 6	_{1 2} a ⁴ 12
$\begin{array}{c c} & & & \\ & & & \\ & & & \\ \hline & & & \\ \hline & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$	W_1 bh ² 24 for e $\frac{2}{3}$ h W_2 hb ² 24	₁ bh ³ 36 ₂ hb ³ 48
	$W_1 = \frac{5}{8} R^3 = 0.625 R^3$ $W_2 = 0.5413 R^3$	1 2 $\frac{5}{16}$ $\overline{3}$ R ⁴ 0.5413 R ⁴
$\begin{array}{c c} & & b & p\\ & & & & b & p\\ & & & & & 1 & & \\ & & & & & & & 1 & & \\ & & & & & & & & & 1 & \\ & & & & & & & & & & & \\ & & & &$	$W_{1} = \frac{6b^{2} + 6bb_{1} + b^{2}}{12(3b + 2b_{1})}h^{2}$ for e $\frac{1}{3}\frac{3b + 2b_{1}}{2b + b_{1}}h$	$1 - \frac{6b^2 + 6bb_1 + b^21}{36(2b + b_1)}h^3$
$\begin{array}{c} -1 & b & b \\ \hline -1 & b & b \\ 1 & -1 & -1 \\ \hline 1 & -1 \\ B \\ $	$W_1 = \frac{BH^3 = bh^3}{6H}$	$1 \frac{BH^3 = bh^3}{12}$
	W ₁ W ₂ QD ³ 32 D ³ 10	1 2 QD ⁴ 64 D ⁴ 20
$\begin{array}{c c} 2 & & & & \\ 1 & & & & \\ 2 & & & & \\ 2 & & & & \\ 0 & & & & & \\ \end{array}$	$W_1 W_2 \frac{\varrho}{32} \frac{D^4 = d^4}{D}$ or in case of thin $W_1 W_2 \qquad (r + s \ 2) \varrho s r^2$	$1 2 \frac{0}{64} (D^4 = d^4)$ wall thickness s: $1 2 \varrho sr^3 1 + (s 2r)^2$ ϱsr^3
	W ₁	₁
$\begin{array}{c} & & & \\ & & & \\ & & & \\$	W ₁ 1 a ₁ or if the wall s a ₁ = a ₂ b ₁ = b ₂ 2 W ₁ $\frac{0}{4}$ a (a + 3b) s	$\frac{0}{4} (a^{3}1b_{1} = a^{3}2b_{2})$ thickness is $2 (a = a_{2}) \qquad 2 (b = b_{2})$ thin $1 \qquad \frac{0}{4} a^{2} (a + 3b) s$
	W_{1} 1 e 0.1908 r ³ with e r 1 = $\frac{4}{\{3_Q\}}$ 0.5756 r axis 1-1 = axis or	$_{1}$ [ϱ 8 = 8 (9 ϱ) r ⁴ 0.1098 r ⁴ f centre of gravity

Mechanics / Strength of Materials Deflections in Beams

$ \begin{bmatrix} f, f_{max}, f_m, w, w_1, w_2 \\ a, b, l, x_1, x_{1max}, x_2 \\ E \\ q, q_0 \end{bmatrix} $	$\begin{array}{c c} \text{Deflection (mm)} & \alpha, \alpha_1, \alpha_2, \alpha_A, \alpha_B, & \text{Angle (}^\circ)\\ \text{Lengths (mm)} & \text{F, } \text{F}_A, \text{F}_B & \text{Forces (N)}\\ \text{Modulus of elasticity (N/mm^2)} & \text{I Second moment of area (mm^4)}\\ \text{Line load (N/mm)} & (\text{moment of inertia)} \end{array}$
F 3 F F B	
	$ w(x) \frac{q}{\{8E\}} 1 = \frac{4}{3} \frac{x}{4} + \frac{1}{3} \frac{x}{4} \qquad \qquad f \frac{q}{\{8E\}} \qquad \qquad \tan \mu \frac{q}{\{6E\}} $ $ F_{\pi} q \qquad \qquad$
	$w(x) = \frac{q_0^{-4}}{\{120E\}} 4 = 5 \frac{x}{2} + \frac{x}{2}^{-5} \qquad f = \frac{q_0^{-4}}{\{30E\}} \qquad \tan \mu = \frac{q_0^{-3}}{\{24E\}}$ $F_{\pi} = \frac{q_0^{-2}}{2}$
	$\frac{F^{2}}{w(x)} = \frac{F^{3}}{\{16E\}} \frac{x}{x} = \frac{4}{3} \frac{x}{1}^{2} \qquad x = \frac{F^{3}}{2} \qquad \frac{F^{3}}{\{48E\}} \qquad \frac{F^{2}}{\tan \mu} = \frac{F^{2}}{\{16E\}}$ $F_{A} = F_{B} = \frac{F}{2}$
	$w_{1}(x_{1}) = \frac{F^{3}}{(6E)} = \frac{a}{2} = \frac{b}{2} - \frac{x_{1}}{1} + \frac{1}{b} = \frac{x_{1}^{2}}{ab} = x_{1} - a - f - \frac{F^{3}}{(3E)} = \frac{a}{2} - \frac{b}{2} - \frac{a}{1} + \frac{f}{2a} - \frac{1}{1 + b} = \frac{a}{2} - \frac{b}{2} - \frac{a}{1 + b} = \frac{a}{2} - \frac{b}{2} - \frac{a}{1 + b} - \frac{b}{2} - \frac{a}{1 + b} = \frac{a}{2} - \frac{b}{2} - \frac{a}{1 + b} - \frac{b}{2} - \frac{a}{1 + b} - \frac{b}{2} - \frac{b}{2} - \frac{a}{1 + b} - \frac{b}{2} - \frac{b}{2}$
$F_{A} \xrightarrow{x_{1}} x_{2} \xrightarrow{x_{2}} F_{B}$ $x_{1max} = \overline{(1+b) 3a} \text{ for } a > b$ change a and b for a < b	$w_{2}(x_{2}) \frac{F^{3}}{(6E)} \stackrel{b}{=} \frac{a^{2}x_{2}}{(6E)} 1 + \frac{a}{a} = \frac{x_{2}^{2}}{ab} x_{2} b f_{max} f \frac{(+b)}{3b} \frac{+b}{3a} \tan \mu_{2} \frac{f}{2b} 1 + \frac{a}{a} = \frac{F^{2}}{ab} x_{2} b f_{max} f \frac{(+b)}{3b} \frac{+b}{3a} \frac{f}{a} \frac{f}{ab} \frac{f}{$
	$ \begin{array}{c} w(x) \frac{F \ 3}{\{2E\}} \ \underline{x} \underline{a} \ 1 = \underline{a} \ = \ \frac{1}{3} \ \underline{x}^2 \qquad f \frac{F \ 3}{\{2E\}} \ \underline{a}^2 \ 1 = \frac{4}{3} \ \underline{a}^2 \qquad \tan \mu_1 \frac{F \ 2}{\{2E\}} \ \underline{a} \ 1 = \underline{a} \\ x a 2 \\ w(x) \frac{F \ 3}{\{2E\}} \ \underline{a}^2 \ 1 = \frac{x}{3} \ \underline{a}^2 \qquad f_m \frac{F \ 3}{\{8E\}} \ \underline{a}^2 \ 1 = \frac{4}{3} \ \underline{a}^2 \qquad \tan \mu_2 \frac{F \ 2}{\{2E\}} \ \underline{a}^2 \ 1 = 2\underline{a} \\ a x 2 \\ \underline{a} x 2 \\ F = F = F \end{array} $
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{array}{c} F^{-3} = \frac{F^{-3}}{(2E)} = \frac{a}{2} \frac{x_2}{(2E)} = \frac{a}{2} \frac{x_2}{1 = \frac{x_2}{2}} \qquad f_m = \frac{F^{-3}}{(8E)} = \frac{a}{2} \frac{a}{(2E)} \frac{a}{(2E)} = \frac{a}{2} \frac{a}{(2E)} \frac{a}{(2E)} = \frac{a}{2} \frac{a}{(2E)} \frac{a}{(2E)} = \frac{a}{2} \frac{a}{(2E)} \frac{a}{(2E)} = \frac{a}{(2E)} \frac{a}{(2E)} \frac{a}{(2E)} \frac{a}{(2E)} = \frac{a}{(2E)} $
$\begin{array}{c} F_{A} & \underbrace{L} & \underbrace{\sigma} \\ \overbrace{\mathcal{S}} & \underbrace{\tilde{g}} & \underbrace{sg} & \underbrace{sg} & \underbrace{\tilde{g}} \\ \overbrace{\mathcal{S}} & \underbrace{\tilde{g}} & \underbrace{sg} & \underbrace{\tilde{g}} \\ \overbrace{\mathcal{S}} & \overbrace{\mathcal{S}} & F_{B} \\ \overbrace{\mathcal{S}} & \underbrace{\tilde{g}} & \underbrace{sg} & \underbrace{sg} & \underbrace{\tilde{g}} \\ \overbrace{\mathcal{S}} & \overbrace{\mathcal{S}} & F_{B} \\ \overbrace{\mathcal{S}} \\ \overbrace{\mathcal{S}} & F_{B} \\ \overbrace{\mathcal{S}} \\ \mathcal$	$ \begin{array}{c} w_{1}(x_{1}) & \frac{r}{(6E)} \stackrel{a}{=} \frac{a}{1} \stackrel{x_{1}}{=} \frac{x_{1}}{1} = \frac{x_{1}}{1} \\ w_{2}(x_{2}) & \frac{F}{(6E)} \stackrel{3}{=} \frac{x_{2}}{(6E)} \stackrel{2a}{=} \frac{x_{2}}{2} \\ F_{A} = F \stackrel{a}{=} F_{B} = F \stackrel{1}{=} \stackrel{a}{=} \frac{x_{2}}{1} \\ \end{array} \begin{array}{c} x_{1} & f \stackrel{r}{=} \frac{r}{(3E)} \stackrel{a}{=} \frac{a}{1} \\ x_{2} & a f_{max} \frac{F}{9} \stackrel{3}{=} \frac{a}{3E} \tan\mu_{B} 2\tan\mu_{A} \\ \hline g \stackrel{r}{=} \frac{a}{3E} \tan\mu_{B} 2\tan\mu_{A} \\ \hline g \stackrel{r}{=} \frac{a}{2} \\ \tan\mu_{A} \stackrel{r}{=} \frac{a}{2} \\ \ \sin\mu_{A} \stackrel{r}{=} \frac{a}{3E} \\ \end{array} $
	$w(x) = \frac{q}{\{24E\}} \times 1 = 2 \times \frac{x}{2} + \frac{x}{3} \qquad 0 \times f_{m} = \frac{5q}{\{384E\}} \times \tan \mu = \frac{q}{\{24E\}}$ $F_{A} = \frac{q}{2} \qquad F_{B} = \frac{q}{2}$

Values for Circular Sections

Axia	al sectio	n modulı	us:	Wa -	π d ³ 32	Are	a:		A	$\frac{\pi}{4}$	2
Pola	ar sectio	on modul	us:	W _p -	$\frac{\pi}{16}$	Ma	SS:		m	$\frac{\pi}{4}$	2 — Ι ϱ
Axia (axi	al secor al mom	id momei ent of ine	nt of area ertia):	a -	π d ⁴ 64	Dei	nsity of st	teel:	6	7,85	kg dm³
Pola (pol	ar secor ar mom	nd mome ent of are	nt of area ea):	а р -	π d ⁴ 32	Sec ine	cond mas rtia (mass	s moment s moment o	of f inertia): J	$\frac{\pi}{3}$	⁴ Ι ϱ 32
d	A	W _a	I _a	Mass /I	J / I	d	A	W _a	I _a	Mass/ I	J / I
mm	cm ²	cm ³	cm ⁴	kg/m	kgm²/m	mm	cm ²	cm ³	cm ⁴	kg/m	kgm ² /m
6.	0.293	0.0212	0.0064	0.222	0.000001	115.	103.869	149.3116	858.5414	81.537	0.134791
7.	0.385	0.0337	0.0118	0.302	0.000002	120.	113.097	169.6460	1017.8760	88.781	0.159807
8.	0.503	0.0503	0.0201	0.395	0.000003	125.	122.718	191.7476	1198.4225	96.334	0.188152
9.	0.636	0.0716	0.0322	0.499	0.000005	130.	132.732	215.6900	1401.9848	104.195	0.220112
10.	0.785	0.0982	0.0491	0.617	0.000008	135.	143 139	241.5468	1630.4406	112.364	0.255979
11.	0.950	0.1307	0.0719	0.746	0.000011	140.	153.938	269.3916	1895.7410	120.841	0.296061
12.	1.131	0.1696	0.1018	0.888	0.000016	145.	165.130	299.2981	2169.9109	129.627	0.340676
13.	1.327	0.2157	0.1402	1.042	0.000022	150.	176.715	331.3398	2485.0489	138.721	0.390153
14.	1.539	0.2694	0.1986	1.208	0.000030	155.	188.692	365.5906	2833.3269	148.123	0.444832
15.	1.767	0.3313	0.2485	1.387	0.000039	160.	201.062	402.1239	3216.9909	157.834	0.505068
16.	2.011	0.4021	0.3217	1.578	0.000051	165.	213.825	441.0133	3638.3601	167.852	0.571223
17.	2.270	0.4823	0.4100	1.782	0.000064	170.	226.980	482.3326	4099.8275	178.179	0.643673
18.	2.545	0.5726	0.5153	1.998	0.000081	175.	240.528	526.1554	4603.8598	188.815	0.722806
19.	2.835	0.6734	0.6397	2.226	0.000100	180.	254.469	572.5553	5152.9973	199.758	0.809021
20.	3.142	0.7854	0.7854	2.466	0.000123	185.	268.803	621.6058	5749.8539	211.010	0.902727
21.	3.464	0.9092	0.9547	2.719	0.000150	190.	283.529	673.3807	6397.1171	222.570	1.004347
22.	3.801	1.0454	1.1499	2.984	0.000181	195.	298.648	727.9537	7097.5481	234.438	1.114315
23.	4.155	1.1945	1.3737	3.261	0.000216	200.	314.159	785.3982	7853.9816	246.615	1.233075
24.	4.524	1.3572	1.6286	3.551	0.000256	210.	346.361	909.1965	9546.5638	271.893	1.498811
25.	4.909	1.5340	1.9175	3.853	0.000301	220.	380.133	1045.3650	11499.0145	298.404	1.805345
26.	5.309	1.7255	2.2432	4.168	0.000352	230.	415.476	1194.4924	13736.6629	326.148	2.156656
27.	5.726	1.9324	2.6087	4.495	0.000410	240.	452.389	1357.1680	16286.0163	355.126	2.556905
28.	6.158	2.1551	3.0172	4.834	0.000474	250.	490.874	1533.9808	19174.7598	385.336	3.010437
29.	6.605	2.3944	3.4719	5.185	0.000545	260.	530.929	1725.5198	22431.7569	416.779	3.521786
30.	7.069	2.6507	3.9761	5.549	0.000624	270.	572.555	1932.3740	26087.0491	449.456	4.095667
32.	8.042	3.2170	5.1472	6.313	0.000808	280.	615.752	2155.1326	30171.8558	483.365	4.736981
34.	9.079	3.8587	6.5597	7.127	0.001030	300.	706.858	2650.7188	39760.7820	554.884	6.242443
36.	10.179	4.5804	8.2448	7.990	0.001294	320.	804.248	3216.9909	51471.8540	631.334	8.081081
38.	11.341	5.3870	10.2354	8.903	0.001607	340.	907.920	3858.6612	65597.2399	712.717	10.298767
40.	12.566	6.2832	12.5664	9.865	0.001973	360.	1017.876	4580.4421	82447.9575	799.033	12.944329
42.	13.854	7.2736	15.2745	10.876	0.002398	380.	1134.115	5387.0460	102353.8739	890.280	16.069558
44.	15.205	8.3629	18.3984	11.936	0.002889	400.	1256.637	6283.1853	125663.7060	986.460	19.729202
46.	16.619	9.5559	21.9787	13.046	0.003451	420.	1385.442	7273.5724	152745.0200	1087.572	23.980968
48.	18.096	10.8573	26.0576	14.205	0.004091	440.	1520.531	8362.9196	183984.2320	1193.617	28.885524
50.	19.635	12.2718	30.6796	15.413	0.004817	460.	1661.903	9555.9364	219786.6072	1304.593	34.506497
52.	21.237	13.9042	35.8908	16.671	0.005635	480.	1809.557	10857.3442	260576.2608	1420.503	40.910473
54.	22.902	15.4590	41.7393	17.978	0.006553	500.	1693.495	12271.8463	306796.1572	1541.344	48.166997
56.	24.630	17.2411	48.2750	19.335	0.007579	520.	2123.717	13804.1581	358908.1107	1667.118	56.348573
58.	26.421	19.1551	55.5497	20.740	0.008721	540.	2290.221	15458.9920	417392.7849	1797.824	65.530667
60.	28.274	21.2058	63.6173	22.195	0.009988	560.	2463.009	17241.0605	482749.6930	1933.462	75.791702
62.	30.191	23.3978	72.5332	23.700	0.011388	580.	2642.079	19155.0758	555497.1978	2074.032	87.213060
64.	32.170	25.7359	82.3550	25.253	0.012930	600.	2827.433	21205.7504	636172.5116	2219.535	99.879084
66.	34.212	28.2249	93.1420	26.856	0.014623	620.	3019.071	23397.7967	725331.6994	2369.970	113.877076
68.	36.317	30.8693	104.9556	28.509	0.016478	640.	3216.991	25735.9270	823549.6636	2525.338	129.297297
70.	38.485	33.6739	117.8588	30.210	0.018504	660.	3421.194	28224.8538	931420.1743	2685.638	146.232967
72.	40.715	36.6435	131.9167	31.961	0.020711	680.	3631.681	30869.2894	1049555.8389	2850.870	164.780267
74.	43.008	39.7828	147.1963	33.762	0.023110	700.	3848.451	33673.9462	1178588.1176	3021.034	185.038334
76.	45.365	43.0964	163.7662	35.611	0.025711	720.	4071.504	36643.5367	1319167.3201	3196.131	207.109269
78.	47.784	46.5890	181.6972	37.510	0.028526	740.	4300.840	39782.7731	1471962.6056	3376.160	231.098129
80.	50.265	50.2655	201.0619	39.458	0.031567	760.	4536.460	43096.3680	1637661.9830	3561.121	257.112931
82.	52.810	54.1304	221.9347	41.456	0.034844	780.	4778.362	46589.0336	1816972.3105	3751.015	285.264653
84.	55.418	58.1886	244.3920	43.503	0.038370	800.	5026.548	50265.4824	2010619.2960	3945.840	315.667229
86.	58.088	62.4447	268.5120	45.599	0.042156	820.	5281.017	54130.4268	2219347.4971	4145.599	348.437557
88.	60.821	66.9034	294.3748	47.745	0.046217	840.	5541.769	58188.5791	2443920.3207	4350.289	383.695490
90. 92. 95. 100. 105. 110.	63.617 66.476 70.882 78.540 86.590 95.033	71.5694 76.4475 84.1726 98.1748 113.6496 130.6706	322.0623 351.6586 399.8198 490.8739 596.6602 718.6884	49.940 52.184 55.643 61.654 67.973 74.601	0.050564 0.055210 0.062772 0.077067 0.093676 0.112834	860. 880. 900. 920. 940. 960. 980. 1000.	5808.805 6082.123 6361.725 6647.610 6939.778 7238.229 7542.964 7853.982	62444.6517 66903.3571 71569.4076 76447.5155 81542.3934 86858.7536 92401.3084 98174.7703	2685120.0234 2943747.7113 3220623.3401 3516585.7151 3832492.4910 4169220.1722 4527664.1126 4908738.5156	4559.912 4774.467 4993.954 5218.374 5447.726 5682.010 5921.227 6165.376	

Mechanics / Strength of Materials Stresses on Structural Members and Fatigue Strength of Structures

Hydraulics	Page
Hydrostatics (Source: K. Gieck, Technische Formelsammlung, 29th Edition, Gieck Verlag, D-7100 Heilbronn)	71
Hydrodynamics	72

(Source: K. Gieck, Technische Formelsammlung, 29th Edition, Gieck Verlag, D-7100 Heilbronn)

Hydraulics Hydrodynamics

Table of Contents Section 7

Electrical Engineering	Page
Basic Formulae	74
Speed, Power Rating and Efficiency of Electric Motors	75
Types of Construction and Mounting Arrangements of Rotating Electrical Machinery	76
Types of Protection for Electrical Equipment (Protection Against Contact and Foreign Bodies)	77
Types of Protection for Electrical Equipment (Protection Against Water)	78
Explosion Protection of Electrical Switchgear (Types of protection)	79
Explosion Protection of Electrical Switchgear (Gases and vapours)	80

Basic Formulae

Ohn	n's law:			π	
U	R <u>U</u> F	R <u>U</u>	Material	$\frac{m}{\mu mm^2}$	$\frac{\mu \text{ mm}^2}{\text{m}}$
Seri R R R _n Shu <u>1</u> R	es connection of resisto $R_1 + R_2 + R_3 + + R_r$ total resistance μ individual resistance μ int connection of resisto $\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + + \frac{1}{R_1}$	prs: 	a) Metals Aluminium Bismuth Lead Cadmium Iron wire Gold Copper Magnesium	36 0.83 4.84 13 6.710 43.5 58 22	0.0278 1.2 0.2066 0.0769 0.150.1 0.023 0.01724 0.045
R	total resistance µ		Nickel Platinum	14.5 9.35	0.069 0.107
R _n	individual resistance μ		Mercury Silver	1.04 61	0.962 0.0164
Elec	ctric power:		Tungsten	7.4 18.2	0.135
	Power		Zinc Tin	16.5 8.3	0.061
Direct current	ΡU	P U	b) Alloys Aldrey (AlMgSi) Bronze I Bronze II Bronze III Constantan (WM 50)	30.0 48 36 18 2 0	0.033 0.02083 0.02778 0.05556 0.50
Single-phase alternating current	P U cos	U cos	Manganin Brass Nickel silver (WM 30) Nickel chromium Niccolite (WM 43) Platinum rhodium Steel wire (WM 13) Wood's metal	2.32 15.9 3.33 0.92 2.32 5.0 7.7 1.85	0.43 0.063 0.30 1.09 0.43 0.20 0.13 0.54
Three-phase current	P 1.73 U cos	P 1.73 U cos	c) Other conductors Graphite Carbon, homog. Retort graphite	0.046 0.015 0.014	22 65 70
Res	istance of a conductor:				
R	$\frac{1}{\pi A} \frac{1}{A}$				
R = = γ = Α = =	resistance (Ω) length of conductor (m) electric conductivity (m/ Ω cross section of conduct specific electrical resista	2 mm ²) or (mm ²) nce (Ω mm ²)/m)			

Electrical Engineering Speed, Power Rating and Efficiency of Electric Motors

Speed:	Power rating:
n <u>f 60</u>	Output power 1)
n = speed (min ⁻¹)	Direct current: ·
f = frequency (Hz) p = number of pole pairs	$P_{ab} = U \cdot \cdot \eta$
	Single-phase alternating current:
Example: $f = 50$ Hz, $p = 2$	$P_{ab} = U \cdot \cdot \cos \cdot \varrho$
n $\frac{50\ 60}{2}$ 1500 min ⁼¹	Three-phase current: $P_{ab} = 1.73 \cdot U \cdot \cdot \cos \cdot \varrho$
Efficiency:	
$\varrho = \frac{P_{ab}}{P_{zu}} = 100 \%^{1)}$	

Example:

Efficiency and power factor of a four-pole 1.1-kW motor and a 132-kW motor dependent on the load

Electrical Engineering Types of Construction and Mounting Arrangements of Rotating Electrical Machinery

Ту	Types of construction and mounting arrangements of rotating electrical machinery [Extract from DIN/IEC 34, Part 7 (4.83)]						
		Machines	s with end s	shields, ho	orizontal arrangem	ent	
[Design			E	Explanation		
Sym- bol	Figure	Bearings	Stator (Housing)	Shaft	General design	Design/Explanation Fastening or Installation	
В3		2 end shields	with feet	free shaft end	_	installation on substructure	
В5		2 end shields	without feet	free shaft end	mounting flange close to bearing, access from housing side	flanged	
B6	- JO	2 end shields	with feet	free shaft end	design B3, if necessary end shields turned through -90°	wall fastening, feet on LH side when looking at input side	
B7		2 end shields	with feet	free shaft end	design B3, if necessary end shields turned through 90°	wall fastening, feet on RH side when looking at input side	
B8	<u>, , , , , , , , , , , , , , , , , , , </u>	2 end shields	with feet	free shaft end	design B3, if necessary end shields turned through 180°	fastening on ceiling	
B 35		2 end shields	with feet	free shaft end	mounting flange close to bearing, access from housing side	installation on substructure with additional flange	

	Machines with end shields, vertical arrangement					
Design Explanation						
Sym- bol	Figure	Bearings	Stator (Housing)	Shaft	General design	Design/Explanation Fastening or Installation
V 1		2 end shields	without feet	free shaft end at the bottom	mounting flange close to bearing on input side, access from housing side	flanged at the bottom
V 3		2 end shields	without feet	free shaft end at the top	mounting flange close to bearing on input side, access from housing side	flanged at the top
V 5		2 end shields	with feet	free shaft end at the bottom	-	fastening to wall or on substructure
V 6		2 end shields	with feet	free shaft end at the top	-	fastening to wall or on substructure

Electrical Engineering Types of Protection for Electrical Equipment (Protection Against Contact and Foreign Bodies)

Types of protection for electrical equipment [Extract from DIN 40050 (7.80)]						
Example of d	esignation Type of protection DIN 40050 IP 4 4					
Designation						
DIN number						
Code letters						
First type num	iber					
Second type r	number					
An enclosure having a diam	with this designation is protected against the ingress of solid foreign bodies leter above 1 mm and of splashing water.					
Degi	rees of protection for protection against contact and foreign bodies (first type number)					
First type number	Degree of protection (Protection against contact and foreign bodies)					
0	No special protection					
1	Protection against the ingress of solid foreign bodies having a diameter above 50 mm (large foreign bodies) 1) No protection against intended access, e.g. by hand, however, protection of persons against contact with live parts					
2	Protection against the ingress of solid foreign bodies having a diameter above 12 mm (medium-sized foreign bodies) 1) Keeping away of fingers or similar objects					
3	Protection against the ingress of solid foreign bodies having a diameter above 2.5 mm (small foreign bodies) 1) 2) Keeping away tools, wires or similar objects having a thickness above 2.5 mm					
4	Protection against the ingress of solid foreign bodies having a diameter above 1 mm (grain sized foreign bodies) 1) 2) Keeping away tools, wires or similar objects having a thickness above 1 mm					
5	Protection against harmful dust covers. The ingress of dust is not entirely prevented, however, dust may not enter to such an amount that operation of the equipment is impaired (dustproof). 3) Complete protection against contact					
6	Protection against the ingress of dust (dust-tight) Complete protection against contact					
 For equipment with degrees of protection from 1 to 4, uniformly or non-uniformly shaped foreign bodies with three dimensions perpendicular to each other and above the corresponding diameter values are prevented from ingress. For degrees of protection 3 and 4, the respective expert commission is responsible for the application of this table for equipment with drain holes or cooling air slots. For degree of protection 5, the respective expert commission is responsible for the application of the protection 5. 						
tion of this table for equipment with drain holes.						

Electrical Engineering Types of Protection for Electrical Equipment (Protection Against Water)

Example of c	lesignation <u>Type of protection</u> <u>DIN 40050</u> <u>IP</u> <u>4</u> <u>4</u>					
Designation						
DIN number						
Code letters						
First type num	nber					
Second type	number					
An enclosure having a diam	with this designation is protected against the ingress of solid foreign bodies neter above 1 mm and of splashing water.					
Degr	ees of protection for protection against water (second type number)					
Second type number	Degree of protection (Protection against water)					
0	No special protection					
1	Protection against dripping water falling vertically. It may not have any harmful effect (dripping water).					
2	Protection against dripping water falling vertically. It may not have any harmful effect on equipment (enclosure) inclined by up to 15° relative to its normal position (diagonally falling dripping water).					
3	Protection against water falling at any angle up to 60° relative to the perpendicular. It may not have any harmful effect (spraying water).					
4	Protection against water spraying on the equipment (enclosure) from all directions. It may not have any harmful effect (splashing water).					
5	Protection against a water jet from a nozzle which is directed on the equipment (enclosure) from all directions. It may not have any harmful effect (hose-directed water).					
6	Protection against heavy sea or strong water jet. No harmful quantities of water may enter the equipment (enclosure) (flooding).					
7	Protection against water if the equipment (enclosure) is immersed under deter- mined pressure and time conditions. No harmful quantities of water may enter the equipment (enclosure) (immersion).					
8	The equipment (enclosure) is suitable for permanent submersion under conditions to be described by the manufacturer (submersion). 1)					
1) This degre however, v	e of protection is normally for air-tight enclosed equipment. For certain equipmer vater may enter provided that it has no harmful effect.					

Electrical Engineering Explosion Protection of Electrical Switchgear

Explosion protection of electrical switchgear Example of designation / Type of protection [Extract from DIN EN 50014 50020]									
Example of desi	gnation	Ex	<u>EEx d IIB T3</u>						
Symbol for equipment certified by an EC testing authority									
Symbol for equipa according to Euro	Symbol for equipment made								
Type of protection	ו ———								
Explosion group									
Temperature clas	s ———								
		Types of protection							
Type of protection	Symbol	Scheme	Application						
Flameproof enclosure	d	Gap-s	Heavy-current engineering (commutator) motors, transformers, switchgear, lighting fittings, and other spark generating parts						
Pressurized enclosure	p		Especially for large apparata, switchgears, motors, genera- tors						
Oil-immersion enclosure	0		Switchgears, transformers						
Sand-filled enclosure	q		Capacitors						
Increased safety	e	X	Squirrel-cage motors, terminal and junction boxes, lighting fittings, current transformers, measuring and control devices						
Intrinsic safety	i	Potentially explosive atmosphere	Low-voltage engineering: measuring and control devices (electrical equipment and circuits)						

Explosion protection of electrical switchgear Designation of electrical equipment / Classification of areas acc. to gases and vapours [Extract from DIN EN 50014 50020]					
	Des	ignation of electrical equipment			
Designat	ion acc. to	VDE 0170/0171/2.61 EN 50014 50020			
Firedamp	protection	Sch EExI			
Explosion	n protection	Ex EExII			
Classification a gases and vap	according to	Explosion class Explosion group			
For flame proof enclosures: maximum width of gap	For intrinsically safe circuits: mi- nimum ignition current ratio re- ferred to me- thane ¹⁾				
> 0.9 mm ≥ 0.5 - 0.9mm < 0.5 mm	> 0.8 mm ≥ 0.45 - 0.8mm < 0.45 mm	1 A 2 B 3a 3n C			
Ignition tempe and vapours ir 1) For definitio EN 50014,	rature of gases ∩ °C on, see Annex A	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
Classification Zone 0 Areas with I long-term po sive atmosphe	of areas accord permanent or tentially explo- eres.	ing to gases and vapours Zone 1 Areas where potentially explosive atmospheres are expected to occur occasionally. Zone 2 Areas where potentially explosive atmospheres are explosive atmosphe			
	ZONE 0	1 2 Safe area			
Potentia explosiv atmosp	ally /e here				
Existing atmosp	explos. permanent here long-term	or (probably during (rarely and at) practically normal operation (occasionally) / never			
Ignition	sources				
	VDE i,s ("Zone C IEC Ex ia])) d, f, o, e, i, s VDE 0165 8 22			

Table of Contents Section 8

Materials	Page
Conversion of Fatigue Strength Values of Miscellaneous Materials	82
Mechanical Properties of Quenched and Tempered Steels	83
Fatigue Strength Diagrams of Quenched and Tempered Steels	84
General-Purpose Structural Steels	85
Fatigue Strength Diagrams of General-Purpose Structural Steels	86
Case Hardening Steels	87
Fatigue Strength Diagrams of Case Hardening Steels	88
Cold Rolled Steel Strips for Springs	89
Cast Steels for General Engineering Purposes	89
Round Steel Wire for Springs	90
Lamellar Graphite Cast Iron	91
Nodular Graphite Cast Iron	91
Copper-Tin- and Copper-Zinc-Tin Casting Alloys	92
Copper-Aluminium Casting Alloys	92
Aluminium Casting Alloys	93
Lead and Tin Casting Alloys for Babbit Sleeve Bearings	94
Comparison of Tensile Strength and Miscellaneous Hardness Values	95
Values of Solids and Liquids	96
Coefficient of Linear Expansion	97
Iron-Carbon Diagram	97
Fatigue Strength Values for Gear Materials	97
Heat Treatment During Case Hardening of Case Hardening Steels	98

CENELEC EEx ia

d,p,o,q,e,i_b,(m)

(n) additionally

Materials Conversion of Fatigue Strength Values of Miscellaneous Materials

Conversion of fatigue strength values of miscellaneous materials								
	Tension ³⁾		Bending ¹⁾			Torsion ¹⁾		
Material	σ_W	σ_{Sch}	σ_{bW}	σ_{bSch}	σ_{bF}	τ_{tW}	$ au_{tSch}$	τ_{F}
Structural steel	0.45 R _m	1.3 σ _W	0.49 R _m	1.5 σ _{bW}	1.5 R _e	0.35 R _m	1.1 τ _{tW}	0.7 R _e
Quenched and temper- ed steel	0.41 R _m	1.7 σ _W	0.44 R _m	1.7 σ _{bW}	1.4 R _e	0.30 R _m	1.6τ _{tW}	0.7 R _e
Case harden- ing steel ²⁾	0.40 R _m	1.6 σ _W	0.41 R _m	1.7 σ _{bW}	1.4 R _e	0.30 R _m	1.4τ _{tW}	0.7 R _e
Grey cast iron	0.25 R _m	1.6 σW	0.37 R _m	$1.8 \sigma_{bW}$	-	0.36 R _m	1.6τ _{tW}	-
Light metal	0.30 R _m	_	0.40 R _m	-	_	0.25 R _m	_	_

1) For polished round section test piece of about 10 mm diameter.

2) Case-hardened; determined on round section test piece of about 30 mm diameter. $\rm R_m$ and $\rm R_e$ of core material.

3) For compression, σ_{Sch} is larger, e.g. for spring steel $\sigma_{dSch}\approx 1.3\cdot\sigma_{Sch}$ For grey cast iron $\sigma_{dSch}\approx 3\cdot\sigma_{Sch}$

Ultim	nate stress values	Type of load
R _m	Tensile strength	Tension
R _e	Yield point	Tension
σ _W	Fatigue strength under alternating stresses	Tension
σ _{Sch}	Fatigue strength under fluctuating stresses	Tension
σ_{bW}	Fatigue strength under alternating stresses	Bending
σ _{bSch}	Fatigue strength under fluctuating stresses	Bending
σ_{bF}	Yield point	Bending
τ _{tW}	Fatigue strength under alternating stresses	Torsion
⁷ tSch	Fatigue strength under fluctuating stresses	Torsion
τ_{tF}	Yield point	Torsion

Materials Mechanical Properties of Quenched and Tempered Steels

Mechai	ענ nical p	roper	ties of ste	els in	quenche	d and	tempered	d cond	lition (Co	de lett	er V)
Ctool are	da										
Steel gra	ide	up t	o 16 mm	above 16 up to 40 mm		above 40 up to 100 mm		above 100 up to 160 mm		above 160 up to 250 mm	
Symbol	Mate- rial no.	Yield point (0.2 Gr) N/mm ² min. R _e , R _{p 0.2}	Tensile strength N/mm ² R _m	Yield point (0.2 Gr) N/mm ² min. Re, Rp 0.2	Tensile strength N/mm ² R _m	Yield point (0.2 Gr) N/mm ² min. R _e , R _{p 0.2}	Tensile strength N/mm ² R _m	Yield point (0.2 Gr) N/mm ² min. R _e , R _{p 0.2}	Tensile strength N/mm ² R _m	Yield point (0.2 Gr) N/mm ² min. R _e , R _{p 0.2}	Tensile strength N/mm ² R _m
C 22	1.0402	350	550- 700	300	500- 650	-	-	-	-	-	-
C 35	1.0501	430	630- 780	370	600- 750	320	550- 700	-	-	-	_
C 45	1.0503	500	700- 850	430	650- 800	370	630- 780	-	-	_	_
C 55	1.0535	550	800- 950	500	750- 900	430	700- 850	-	-	_	_
C 60	1.0601	580	850-1000	520	800- 950	450	750- 900	-	-	-	-
Ck 22	1.1151	350	550- 700	300	500- 650	-	-	_	-		
Ck 35	1.1181	430	630- 780	370	600- 750	320	550- 700	_	-	-	-
Cm 35	1.1180	430	630- 780	370	600- 750	320	550- 700	_	_	-	-
Ck 45	1 1191	500	700- 850	430	650- 800	370	630- 780	_	_	-	-
Cm 45	1 1201	500	700- 850	430	650- 800	370	630- 780	_	_	-	-
Ck 55	1 1203	550	800- 950	500	750- 900	430	700- 850	_		-	-
Cm 55	1 1200	550	800- 950	500	750_ 900	430	700 850	_		-	-
Ck 60	1.1203	580	850-1000	520	800- 950	450	750- 000			-	-
Cm 60	1.1223	580	850-1000	520	800- 950	450	750- 900	_	_	-	-
28 Mn 6	1.1170	590	780- 930	490	690- 840	440	640- 790	_	_	_	_
38 Cr 2	1.7003	550	800- 950	450	700- 850	350	600- 750	_	_	-	_
46 Cr 2	1 7006	650	900-1100	550	800- 950	400	650- 800	_	_	_	_
34 Cr 4	1 7033	700	900-1100	590	800- 950	460	700- 850	_	_	_	_
34 Cr S4	1 7037	700	900-1100	590	800- 950	460	700- 850	_	_	_	_
37 Cr 4	1 7034	750	950-1150	630	850-1000	510	750- 900	_	_	_	_
37 Cr S4	1.7038	750	950_1150	630	850-1000	510	750_ 900	_		_	_
11 Cr 1	1.7035	800	1000_1200	660	000-1000 000-1100	560	800- 950				
41 Cr S4	1.7033	800	1000–1200	660	900-1100	560	800- 950 800- 950	_	_	_	_
25 CrMo 4	1.7218	700	900–1100	600	800- 950	450	700- 850	400	650- 800	_	-
34 CrMo 4	1.7220	800	1000-1200	650	900-1100	550	800- 950	500	750- 900	450	700- 85
34 CrMo S4	1.7226	800	1000-1200	650	900-1100	550	800- 950	500	750- 900	450	700- 85
42 CrMo 4	1.7225	900	1100-1300	750	1000-1200	650	900-1100	550	800- 950	500	750- 90
42 CrMo S4	1.7227	900	1100-1300	750	1000-1200	650	900-1100	550	800- 950	500	750- 90
50 CrMo 4	1.7228	900	1100-1300	780	1000-1200	700	900-1100	650	850-1000	550	800- 95
36 CrNiMo 4	1 6511	900	1100_1300	800	1000-1200	700	900_1100	600	800_ 950	550	750_ 00
34 CrNiMa 6	1.0011	1000	1200-1400	000	1100-1200	800	1000-1100	700	900- 900	600	800 05
30 CrNiMo 6	1.6580	1050	1250-1400	1050	1250-1450	900	1100-1300	800	1000-1200	700	900-110
50.01/1	4.0450		4400 4000	000	4000 4000	700	000 1100	050	050 1000		000 07
	1.8159	900	100-1300	800	1000-1200	700	900-1100	000	000-1000	000	800- 95
30 CrivioV9	117/07	1050	11250 - 1450	1020	11200-1450	900	ETU0-1300	800	1000-1200	700	900–110

Materials Fatigue Strength Diagrams of Quenched and Tempered Steels

Materials General-Purpose Structural Steels

Steel grade		Treat- ment condi- tion	Similar steel grades EURON. 25	Tensile in N/mr thick	Tensile strength R _m in N/mm ² for product thickness in mm			Upper yield point R _{eH} in N/mm ² (minimum) for product thickness in mm				
Symbol	Mate- rial no.	1)		<3	≥3 ≤100	>100	≤16	>16 ≤40	>40 ≤63	>63 ≤80	>80 ≤100	>100
St 33	1.0035	U, N	Fe 310-0	310 540	290		185	175 ₂₎	_	_	_	
St 37-2 U St 37-2	1.0037 1.0036	U, N U, N	_ Fe 360-BFU	260	240		235	225	215	205	195	
R St 37-2 St 37-3	1.0038 1.0116	U, N, U N	Fe 360-BFN Fe 360-C Fe 360-D	510	470	uodn	235	225	215	215	215	uodn
St 44-2 St 44-3 St 44-3	1.0044 1.0144	U, N U N	Fe 430-B Fe 430-C Fe 430-D	430 580	410 540	o be agreed	275	265	255	245	235	be lagreed i
St 52-3	1.0570	U N	Fe 510-C Fe 510-D	510 680	490 630		355	345	335	325	315	4
St 50-2	1.0050	U, N	Fe 490-2	490 660	470 610		295	285	275	265	255	
St 60-2	1.0060	U, N	Fe 590-2	590 770	570 710		335	325	315	305	295	
St 70-2	1.0070	U, N	Fe 690-2	690 900	670 830		365	355	345	335	325	

Materials Fatigue Strength Diagrams of General-Purpose Structural Steels

Materials Case Hardening Steels

Case hardening steels; Quality specifications to DIN 17210 (12.69) from SI tables (2.1974) of VDEh										
Steel gra	ade		For	[.] dia. 11	For	dia. 30	For	dia. 63		
Symbol	Material no.	Treatment condition 1)	Yield point R _e N/mm ² min.	Tensile strength R _m N/mm ²	Yield point R _e N/mm ² min.	Tensile strength R _m N/mm ²	Yield point R _e N/mm ² min.	Tensile strength R _m N/mm ²		
C 10 Ck 10	1.0301 1.1121		390 390	640– 790 640– 790	295 295	490– 640 490– 640		-		
C 15 Ck 15 Cm 15	1.0401 1.1141 1.1140		440 440 440	740– 890 740– 890 740– 890	355 355 355	590– 790 590– 790 590– 790	- - -	- - -		
15 Cr 13	1.7015	210	510	780–1030	440	690- 890	-			
16 MnCr 5 16 MnCrS 5 20 MnCr 5 20 MnCrS5 20 MoCr 4 20 MoCrS 4 25 MoCrS 4 25 MoCrS 4 15 CrNi 6 18 CrNi 8 17 CrNiMo 6	1.7131 1.7139 1.7147 1.7149 1.7321 1.7323 1.7325 1.7326 1.5919 1.5920 1.6587	For details, see DIN 17	635 635 735 735 635 635 735 735 685 835 835	880–1180 880–1180 1080–1380 1080–1380 880–1180 880–1180 1080–1380 1080–1380 960–1280 1230–1480 1180–1430	590 590 685 685 590 590 685 685 685 635 785 785	780–1080 780–1080 980–1280 980–1280 780–1080 780–1080 980–1280 980–1280 880–1180 1180–1430	440 440 540 540 - - - 540 685 685	640- 940 640- 940 780-1080 780-1080 - - - - 780-1080 1080-1330 980-1280		
			Briton							
Trea	atment co	ndition				Meaning				
	С				treate	d for shearing	g load			
	G					soft annealed				
	BF				trea	ated for stren	gth			
	BG			tr	eated for	ferrite/pearlit	e structu	re		

Materials Fatigue Strength Diagrams of Case Hardening Steels

Materials Cold Rolled Steel Strips for Springs Cast Steels for General Engineering Purposes

Cold rolled steel strips for springs [Extract from DIN 17222 (8.79)]									
Steel gra	de	Comparable grade	Degree of	Tensile strength R _m					
Symbol	Material no.	acc. to EURONORM 132	conformity ¹⁾	²⁾ N/mm ² maximum					
C 55 Ck 55	1.0535 1.1203	1 CS 55 2 CS 55	•	610					
C 60 Ck 60	1.0601 1.1221	1 CS 60 2 CS 60	•	620					
C 67 Ck 67	1.0603 1.1231	1 CS 67 2 CS 67	•	640					
C 75 CK75	1.0605 1.1248	1 CS 75 2 CS 75	•	640					
Ck 85 CK 101	1.1269 1.1274	2 CS 85 CS 100	•	670 690					
55 Si 7	1.0904	-	-	740					
71 Si 7	1.5029	-	-	800					
67 SiCr 5	1.7103	67 SiCr 5	0	800					
50 CrV 4	1.8159	50 CrV 4	•	740					

1) • = minor deviations

 \bigcirc = substantial deviations

2) R_m for cold rolled and soft-annealed condition; for strip thicknesses up to 3 mm

Cast ste	Cast steels for general engineering purposes [Extract from DIN 1681 (6.85)]										
Cast steel (Cast steel grade		Tensile strength	Notched bar impact work (ISO-V-notch specimens) A _v							
		···e, ···p 0.2	111	≤ 30 mm	> 30 mm						
Symbol	Material no.	N/mm ² min.	N/mm ² min.	Mean value ¹⁾ J min.							
GS-38	1.0420	200	380	35	35						
GS-45	1.0446	230	450	27	27						
GS-52	1.0552	260	520	27	22						
GS-60	1.0558	300	600	27	20						

The mechanical properties apply to specimens which are taken from test pieces with thicknesses up to 100 mm. Furthermore, the yield point values also apply to the casting itself, in so far as the wall thickness is \leq 100 mm.

1) Determined from three individual values each.

Materials Round Steel Wire for Springs

Round	steel wire for spri	ngs [Extract from	DIN 17223, Part 1 (12.84)]					
Grade of wire	А	В	С	D					
Diameter of wire mm	Tensile strength R _m in N/mm ²								
0.07	-	-	-	2800–3100					
0.3	-	2370–2650	-	2660–2940					
1	1720–1970	1980–2220	-	2230–2470					
2	1520–1750	1760–1970	1980–2200	1980–2200					
3	1410–1620	1630–1830	1840–2040	1840–2040					
4	1320–1520	1530–1730	1740–1930	1740–1930					
5	1260–1450	1460–1650	1660–1840	1660–1840					
6	1210–1390	1400–1580	1590–1770	1590–1770					
7	1160–1340	1350–1530	1540–1710	1540–1710					
8	1120–1300	1310–1480	1490–1660	1490–1660					
9	1090–1260	1270–1440	1450–1610	1450–1610					
10	1060–1230	1240–1400	1410–1570	1410–1570					
11	-	1210–1370	1380–1530	1380–1530					
12	-	1180–1340	1350–1500	1350–1500					
13	-	1160–1310	1320–1470	1320–1470					
14	-	1130–1280	1290–1440	1290–1440					
15	-	1110–1260	1270–1410	1270–1410					
16	_	1090–1230	1240–1390	1240–1390					
17	-	1070–1210	1220–1360	1220–1360					
18	_	1050–1190	1200–1340	1200–1340					
19	-	1030–1170	1180–1320	1180–1320					
20	_	1020–1150	1160–1300	1160–1300					

Materials Lamellar Graphite Cast Iron Nodular Graphite Cast Iron

	Lamellar	graphite cast	iron [Extract	from DIN 16	91 (5.85)]	
Gra Mat	ade erial	Wall thicknesses in mm		Tensile strength ¹⁾ R _m	Brinell hardness 1)	Compres- sive strength ²⁾ σ _{dB}
Symbol	Number	above	up to	N/mm ²	HB 30	N/mm ²
GG-10	0.6010	5	40	min. 100 ²⁾	_	_
GG-15	0.6015	10 20 40 80	20 40 80 150	130 110 95 80	225 205 – –	600
GG-20	0.6020	10 20 40 80	20 40 80 150	180 155 130 115	250 235 – –	720
GG-25	0.6025	10 20 40 80	20 40 80 150	225 195 170 155	265 250 – –	840
GG-30	0.6030	10 20 40 80	20 40 80 150	270 240 210 195	285 265 – –	960
GG-35	0.6035	10 20 40 80	20 40 80 150	315 280 250 225	285 275 – –	1080

The values apply to castings which are made in sand moulds or moulds with comparable heat diffusibility.

1) These values are reference values.

2) Values in the separately cast test piece with 30 mm diameter of the unfinished casting.

	Nodular graphite cast iron [Extract from DIN 1693, Part 2 (10.77)]											
	Properties in cast-on test pieces											
Grade Material		Wall thickness of casting		Thickness of cast-on test piece	Tensile strength R _m	0.2% proof stress Rp _{0.2}						
Symbol	Number	mm	mm	mm	N/mm ²	N/mm ²						
GGG-40.3	0.7043	from 30 above 60	up to 60 up to 200	40 70	390 370	250 240						
GGG-40	0.7040	from 30 above 60	up to 60 up to 200	40 70	390 370	250 240						
GGG-50	0.7050	from 30 above 60	up to 60 up to 200	40 70	450 420	300 290						
GGG-60	0.7060	from 30 above 60	up to 60 up to 200	40 70	600 550	360 340						
GGG-70	0.7070	from 30 above 60	up to 60 up to 200	40 70	700 650	400 380						

Materials

Copper-Tin- and Copper-Zinc-Tin Casting Alloys Copper-Aluminium Casting Alloys

Copper-tin-	Copper-tin- and copper-zinc-tin casting alloys [Extract from DIN 1705 (11.81)]										
Material Symbol Number		Condition on delivery	0.2% proof stress 1) R _{p0.2} min. in N/mm ²	Tensile strength 1) R _m min. in N/mm ²							
G-CuSn 12 GZ-CuSn 12 GC-CuSn12	2.1052.01 2.1052.03 2.1052.04	Sand-mould cast iron Centrifugally cast iron Continuously cast iron	140 150 140	260 280 280							
G-CuSn 12 Ni GZ-CuSn 12 Ni GC-CuSn 12 Ni	2.1060.01 2.1060.03 2.1060.04	Sand-mould cast iron Centrifugally cast iron Continuously cast iron	160 180 170	280 300 300							
G-CuSn 12 Pb GZ-CuSn 12 Pb GC-CuSn 12 Pb	2.1061.01 2.1061.03 2.1061.04	Sand-mould cast iron Centrifugally cast iron Continuously cast iron	140 150 140	260 280 280							
G-CuSn 10	2.1050.01	Sand-mould cast iron	130	270							
G-CuSn 10 Zn	2,1086.01	Sand-mould cast iron	130	260							
G-CuSn 7 ZnPb GZ-CuSn 7 ZnPb GC-CuSn 7 ZnPb	2.1090.01 2.1090.03 2.1090.04	Sand-mould cast iron Centrifugally cast iron Continuously cast iron	120 130 120	240 270 270							
G-CuSn 6 ZnNi	2.1093.01	Sand-mould cast iron	140	270							
G-CuSn 5 ZnPb	2.1096.01	Sand-mould cast iron	90	220							
G-CuSn 2 ZnPb	2.1098.01	Sand-mould cast iron	90	210							

1) Material properties in the test bar

	Сорр	er-aluminiu	m casting alloys [Extract f	from DIN 1714 (11.	81)]
	Material		Condition on delivery	0.2% proof stress 1) R _{p0.2}	Tensile strength 1) R _m
ļ	Symbol	Number		min. in N/mm ²	min. in N/mm ²
	G-CuAl 10 Fe	2.0940.01	Sand-mould cast iron	180	500
	GK-CuAl 10 Fe	2.0940.02	Chilled casting	200	550
	GZ-CuAl 10 Fe	2.0940.03	Centrifugally cast iron	200	550
	G-CuAl 9 Ni	2.0970.01	Sand-mould cast iron	200	500
	GK-CuAl 9 Ni	2.0970.02	Chilled casting	230	530
	GZ-CuAl 9 Ni	2.0970.03	Centrifugally cast iron	250	600
	G-CuAl 10 Ni GK-CuAl 10 Ni GZ-CuAl 10 Ni GC-CuAl 10 Ni	2.0975.01 2.0975.02 2.0975.03 2.0975.04	Sand-mould cast iron Chilled casting Centrifugally cast iron Continuously cast iron	270 300 300 300 300	600 600 700 700
	G-CuAl 11 Ni	2.0980.01	Sand-mould cast iron	320	680
	GK-CuAl 11 Ni	2.0980.02	Chilled casting	400	680
	GZ-CuAl 11 Ni	2.0980.03	Centrifugally cast iron	400	750
	G-CuAl 8 Mn	2.0962.01	Sand-mould cast iron	180	440
	GK-CuAl 8 Mn	2.0962.02	Chilled casting	200	450

1) Material properties in the test bar

Aluminium casting alloys [Extract from DIN 1725 (2.86)]									
Materia	I	Casting method and condition on delivery	0.2 proof stress R _{p0.2}	Tensile strength R _m					
Symbol	Number		in N/mm ²	in N/mm ²					
G-AISi 12	3.2581.01	Sand-mould cast iron as cast	70 up to 100	150 up to 200					
G-AISi 12 g	3.2581.44	Sand-mould cast iron annealed and quenched	70 up to 100	150 up to 200					
GK-AISi 12	3.2581.02	Chilled casting as cast	80 up to 110	170 up to 230					
GK-AISi 12 g 3.2581.45 Chille annealed a		Chilled casting annealed and quenched	80 up to 110	170 up to 230					
G-AISi 10 Mg 3.2381.01		Sand-mould cast iron as cast	80 up to 110	160 up to 210					
G-AISi 10 Mg wa 3.2381.61		Sand-mould cast iron temper-hardened	180 up to 260	220 up to 320					
GK-AlSi 10 Mg	3.2381.02	Chilled casting as cast	90 up to 120	180 up to 240					
GK-AlSi 10 Mg wa	3.2381.62	Chilled casting temper-hardened	210 up to 280	240 up to 320					
G-AISi 11	3.2211.01	Sand-mould cast iron as cast	70 up to 100	150 up to 200					
G-AlSi 11 g	3.2211.81	annealed	70 up to 100	150 up to 200					
GK-AISi 11	3.2211.02	Chilled casting as cast	80 up to 110	170 up to 230					
GK-AISi 11g	3.2211.82	annealed	80 up to 110	170 up to 230					
G-AlSi 7 Mg wa	3.2371.61	Sand-mould cast iron temper-hardened	190 up to 240	230 up to 310					
GK-AlSi 7 Mg wa	3.2371.62	Chilled casting temper-hardened	200 up to 280	250 up to 340					
GF-AlSi 7 Mg wa	3.2371.63	High-quality casting temper-hardened	200 up to 260	260 up to 320					
G-AIMg 3 Si	3.3241.01	Sand-mould cast iron as cast	80 up to 100	140 up to 190					
G-AIMg 3 Si wa	3.3241.61	Sand-mould cast iron temper-hardened	120 up to 160	200 up to 280					
GK-AIMg 3 Si	3.3241.02	Chilled casting as cast	80 up to 100	150 up to 200					
GK-AIMg 3 Si wa	3.3241.62	Chilled casting temper-hardened	120 up to 180	220 up to 300					
GF-AIMg 3 Si wa	3.3241.63	Chilled casting temper-hardened	120 up to 160	200 up to 280					

Materials

Lead and Tin Casting Alloys for Babbit Sleeve Bearings

Lead and tin casting alloys for babbit sleeve bearings [Extract from DIN ISO 4381 (10.82)]										
Grade Material	Brin HI	Brinell hardness ¹⁾ HB 10/250/180			0.2% proof stress ¹⁾ R _{p 0.2} in N/mm ²					
Symbol	Number	20 °C	50 °C	120 °C	20 °C	50 °C	100 °C			
PbSb 15 SnAs	2.3390	18	15	14	39	37	25			
PbSb 15 Sn 10	2.3391	21	16	14	43	32	30			
PbSb 14 Sn 9 CuAs	2.3392	22	22	16	46	39	27			
PbSb 10 Sn 6	2.3393	16	16	14	39	32	27			
SnSb 12 Cu 6 Pb	2.3790	25	20	12	61	60	36			
SnSb 8 Cu 4	2.3791	22	17	11	47	44	27			
SnSb 8 Cu 4 Cd	2.3792	28	25	19	62	44	30			

1) Material properties in the test bar

Materials

Comparison of Tensile Strength and Miscellaneous Hardness Values

Tensile strength	Vickers hard- ness	Brinell hardness 2)	Rockwell hardness			Tensile strength	Vickers hard- ness	Brinell hardness 2)	R ha	ockwe ardnes	ell ss	
N/mm ²	(F>98N)	$0.102 = \frac{F}{D^2} + 30 \frac{N}{mm^2}$	HRB	HRC	HRA	HRD 1)	N/mm ²	(F>98N)	$0.102 = \frac{F}{D^2} + 30 \frac{N}{mm^2}$	HRC	HRA	HRD 1)
255 270 285 305 320	80 85 90 95 100	76.0 80.7 85.5 90.2 95.0	41.0 48.0 52.0 56.2				1155 1190 1220 1255 1290	360 370 380 390 400	342 352 361 371 380	36.6 37.7 38.8 39.8 40.8	68.7 69.2 69.8 70.3 70.8	52.8 53.6 54.4 55.3 56.0
335 350 370 385 400	105 110 115 120 125	99.8 105 109 114 119	62.3 66.7				1320 1350 1385 1420 1455	410 420 430 440 450	390 399 409 418 428	41.8 42.7 43.6 44.5 45.3	71.4 71.8 72.3 72.8 73.3	56.8 57.5 58.2 58.8 59.4
415 430 450 465 480	130 135 140 145 150	124 128 133 138 143	71.2 75.0 78.7				1485 1520 1555 1595 1630	460 470 480 490 500	437 447 (456) (466) (475)	46.1 46.9 47.7 48.4 49.1	73.6 74.1 74.5 74.9 75.3	60.1 60.7 61.3 61.6 62.2
495 510 530 545 560	155 160 165 170 175	147 152 156 162 166	81.7 85.0				1665 1700 1740 1775 1810	510 520 530 540 550	(485) (494) (504) (513) (523)	49.8 50.5 51.1 51.7 52.3	75.7 76.1 76.4 76.7 77.0	62.9 63.5 63.9 64.5 64.8
575 595 610 625 640	180 185 190 195 200	171 176 181 185 190	87.1 89.5 91.5				1845 1880 1920 1955 1995	560 570 580 590 600	(532) (542) (551) (561) (570)	53.0 53.6 54.1 54.7 55.2	77.4 77.8 78.0 78.4 78.6	65.4 65.8 66.2 66.7 67.0
660 675 690 705 720	205 210 215 220 225	195 199 204 209 214	92.5 93.5 94.0 95.0 96.0				2030 2070 2105 2145 2180	610 620 630 640 650	(580) (589) (599) (608) (618)	55.7 56.3 56.8 57.3 57.8	78.9 79.2 79.5 79.8 80.0	67.5 67.9 68.3 68.7 69.0
740 755 770 785 800	230 235 240 245 250	219 223 228 233 238	96.7 98.1 99.5	20.3 21.3 22.2	60.7 61.2 61.6	40.3 41.1 41.7		660 670 680 690 700		58.3 58.8 59.2 59.7 60.1	80.3 80.6 80.8 81.1 81.3	69.4 69.8 70.1 70.5 70.8
820 835 850 865 880	255 260 265 270 275	242 247 252 257 261	(101) (102)	23.1 24.0 24.8 25.6 26.4	62.0 62.4 62.7 63.1 63.5	42.2 43.1 43.7 44.3 44.9		720 740 760 780 800		61.0 61.8 62.5 63.3 64.0	81.8 82.2 82.6 83.0 83.4	71.5 72.1 72.6 73.3 73.8
900 915 930 950 965	280 285 290 295 300	266 271 276 280 285	(104) (105)	27.1 27.8 28.5 29.2 29.8	63.8 64.2 64.5 64.8 65.2	45.3 46.0 46.5 47.1 47.5		820 840 860 880 900		64.7 65.3 65.9 66.4 67.0	83.8 84.1 84.4 84.7 85.0	74.3 74.8 75.3 75.7 76.1
995 1030 1060 1095 1125	310 320 330 340 350	295 304 314 323 333		31.0 32.3 33.3 34.4 35.5	65.8 66.4 67.0 67.6 68.1	48.4 49.4 50.2 51.1 51.9		920 940		67.5 68.0	85.3 85.6	76.5 76.9

The figures in brackets are hardness values outside the domain of definition of standard hardness test methods which, however, in practice are frequently used as approximate values. Furthermore, the Brinell hardness values in brackets apply only if the test was carried out with a carbide ball.

1) Internationally usual, e.g. ASTM E 18-74 (American Society for Testing and Materials)

2) Calculated from HB = 0.95 HV (Vickers hardness)

Determination of Rockwell hardness HRA, HRB, HRC, and HRD acc. to DIN 50103 Part 1 and 2 Determination of Vickers hardness acc. to DIN 50133 Part 1 Determination of Brinell hardness acc. to DIN 50351 Determination of tensile strength acc. to DIN 50145

Values of so	lids	and liqu	uids		Mean density of th	e eai	th = 5.5	17 g/cm ³	3
Substance (solid)	Sym- bol	Density π	Melting point	Thermal conductivity λ at 20 °C	Substance (solid)	Sym- bol	Density π	Melting point	Thermal conducti- vity λ at 20 °C
		g/cm ³	t in °C	W/(mK)			g/cm ³	t in °C	W/(mK)
Agate		2.52.8	≈1600	11.20	Porcelain		2.22.5	≈1650	≈1
Aluminium	AI	2.7	658	204	Pyranite		3.3	1800	8.14
Aluminium bronze		7.7	1040	128	Quartz-flint		2.52.8	1480	9.89
Antimony	Sb	6.67	630	22.5	Radium	Ra	5	700	-
Arsenic	As	5.72	-	_	Rhenium	Re	21	3175	71
Asbestos		≈2.5	≈1300	_	Rhodium	Rh	12.3	1960	88
Asphaltum		1.11.5	80100	0.698	Gunmetal (CuSn5ZnPb)		8.8	950	38
Barium	Ba	3.59	704	_	Rubidium	Rb	1.52	39	58
Barium chloride	20	31	960	_	Ruthenium	Ru	12.2	2300	106
Basalt, natural		2.73.2	-	1.67	Sand, dry		1.41.6	1480	0.58
Bervllium	Be	1.85	1280	1.65	Sandstone		2.12.5	≈1500	2.3
Concrete		≈2	-	≈1	Brick, fire		1.82.3	≈2000	≈1.2
Lead	Pb	11.3	327.4	34.7	Slate		2.62.7	≈2000	≈0.5
Boron (amorph.)	B	1.73	2300	_	Emery		4	2200	11.6
Borax	_	1.72	740	_	Sulphur, rhombic	S	2.07	112.8	0.27
Limonite		3.43.9	1565	_	Sulphur, monoclinic	Š	1.96	119	0.13
Bronze (CuSn6)		8.83	910	64	Barvtes	-	4.5	1580	-
Chlorine calcium		22	774	-	Selenium red	Se	4.4	220	0.2
Chromium	Cr	71	1800	69	Silver	Aa	10.5	960	407
Chromium nickel (NiCr 8020)	01	7.1	1430	52 335	Silicon	Si	2 33	1420	83
Delta metal		8.6	950	104.7	Silicon carbide	01	3.12	-	15.2
Diamond	С	3.5	-	-	Sillimanite		2.4	1816	1.69
	Fe	7.86	1530	81	Soapstone (talcous)		27	-	3.26
Grease		0.92 0.94	30 175	0.209	Steel plain + low-allov		7.9	1460	47 58
Gallium	Ga	59	29.75	0.200	stainless 18Cr8Ni		7.0	1450	14
Germanium	Ge	5 32	936	58 615	non-magnetic 15Ni7Mn		8	1450	16.28
Gypsum	00	23	1200	0.45	Tungsten steel 18W		87	1450	26
Glass window		≈2.5	~700	0.40	Steanit		26.27	≈1520	1.63
Mica		~2.3	~1300	0.01	Hard coal		1 35	~1520	0.24
Gold	Διι	~2.0	~1063	310	Strontium	Sr	2.54	707	0.24
Gold	Au	26.28	1005	35	Tantalum	Ta	16.6	2000	54
Graphito	6	2.02.0	~3800	169	Tollurium	To	6.25	2990	10
Gray cast iron	U	7.25	~3000	59	Thorium	Th	11.7	~1800	4.5
Laminated fabric		1.2.5	1200	0 24 0 25	Titonium	Ti	4.5	~1000	15.5
Hard rubbor		~1.42	_	0.340.33	Tombac		9.65	1070	150
Hard metal K20		~1.4	2000	81	Liranium 00 00%		18 26	1500 1700	0 03 1 28
Woods		0.45 0.95	2000	0 12 0 17	Uropium 00.00%		10.7	1122	20
woods	La.	0.450.65	-	0.120.17	Orallium 99.99%	0	10.7	1133	20
Indium	In	7.31	156	24	Vanadium	V	6.1	1890	31.4
Iridium	Ir	22.5	2450	59.3	Soft rubber		11.8	-	0.140.23
Cadmium	Cd	8.64	321	92.1	White metal		7.510.1	300400	34.969.8
Potassium	K	0.86	63.6	110	Bismuth	Bi	9.8	271	8.1
Limestone		2.6	-	2.2	Wolfram	W	19.2	3410	130
Calcium	Ca	1.55	850	-	Cesium	Cs	1.87	29	-
Calcium oxide (lime)		3.4	2572	_	Cement, hard	_	22.2	-	0.91.2
Caoutchouc, crude		0.95	125	0.2	Cerium	Ce	6.79	630	-
Cobalt	Co	8.8	1490	69.4	Zinc	Zn	6.86	419	110
Salt, common		2.15	802	-	Tin	Sn	7.2	232	65
Coke		1.61.9	-	0.184	Zirconium	Zr	6.5	1850	22
Constantan		8.89	1600	23.3					
Corundum (AL ₂ O ₃)		3.94	2050	1223					
Chalk		1.82.6	-	0.92				Boiling	Thermal
Copper	Cu	8.9	1083	384			Density	point	conducti-
Leather, dry		0.91	-	0.15	Substance (liquid)	Svm-	π	at	vity λ
Lithium	Li	0.53	179	71		bol		1.013MPa	at 20 °C
Magnesium	Ma	1.74	657	157			a/cm ³ at	°C	W/(mK)
							°C	-	, (
Magnesium, alloyed		1.81.83	650	69.8145.4	Ether		0.72 20	35	0.14
Manganese	Mn	7.43	1250	30	Benzine		≈0.73 15	25210	0.13
Marble		2.62.8	1290	2.8	Benzole, pure		0.83 15	80	0.14
Red lead oxide		8.69.1	-	0.7	Diesel oil		0.83 15	210380	0.15
Brass (63Cu37Zn)		8.5	900	116	Glycerine		1.26 20	290	0.29
Molybdenum	Mo	10.2	2600	145	Resin oil		0.96 20	150300	0.15
Monel metal		8.8	≈1300	19.7	Fuel oil EL		≈0.83 20	> 175	0.14
Sodium	Na	0.98	97.5	126	Linseed oil		0.93 20	316	0.17
Nickel silver		8.7	1020	48	Machinery oil		0.91 15	380400	0.125
Nickel	Ni	8.9	1452	59	Methanol	1	0.8 15	65	0.21
Niobium	Nb	8.6	2415	54.43	Methyl chloride		0.95 15	24	0.16
Osmium	Os	22.5	2500	-	Mineral oil		0.91 20	> 360	0.13
Palladium	Pd	12	1552	70.9	Petroleum ether		0.66 20	> 40	0.14
Paraffin	1	0.9	52	0.26	Petroleum		0.81 20	> 150	0.13
Pitch	1	1.25	-	0.13	Mercury	Hg	13.55 20	357	10
Phosphorus (white)	Р	1.83	44		Hydrochloric acid 10%	Ť	1.05 15	102	0.5
Platinum	Pt	21.5	1770	70	Sulphuric acid, strong		1.84 15	338	0.47
Polyamide A, B	1	1.13	≈250	0.34	Silicon fluid	1	0.94 20	- 1	0.22

Materials

Coefficient of Linear Expansion; Iron-Carbon Diagram; Fatigue Strength Values for Gear Materials

Coefficient of linear expansion $\boldsymbol{\alpha}$	Coefficients of linear expansion of some substances at 0 100 °C				
The coefficient of linear expansion α gives the fractional expansion of the unit of length	Substance	α [10 ⁻⁶ /K]			
rature. For the linear expansion of a body	Aluminium alloys	21 24			
applies.	(e.g. GG-20, GG-25)	10.5			
$I + I_o = \mu = T$	Steel, plain and low-alloy	11.5			
where	Steel, stainless (18Cr 8Ni)	16 11 5			
l _o : original length	Copper	17			
α : coefficient of linear expansion	Brass CuZn37	18.5			
ΔT : rise of temperature	Bronze CuSn8	17.5			

Iron-carbon diagram

Pitting and tooth root fatigue strength of case hardening steels, DIN 17210								
Symbol	Hardness on finished gear	σ _{Hlim}	σ_{Flim}					
Symbol	HV1	N/mm ²	N/mm ²					
16 MnCr 5 15 CrNi 6 17 CrNiMo 6	720 730 740	1470 1490 1510	430 460 500					

Materials Heat Treatment During Case Hardening of Case Hardening Steels

Heat treatment during case hardening of case hardening steels acc. to DIN 17210									
Usual heat treatment during case hardening									
A. Direct hardening or double hardening	B. Single hardening	C. Hardening after isothermal transformation							
Direct hardening from carburizing	Single hardening from core or case	Hardening after isothermal transfor-							
temperature	hardening temperature	mation in the pearlite stage (e)							
Direct hardening after lowering to hardening temperature	Single hardening after intermediate annealing (soft annealing) (d)	Hardening after isothermal transfor- mation in the pearlite stage (e) and cooling-down to room temperature							
Double hardening	a carburizing temperature b hardening temperature c tempering temperature d intermediate annealing (soft annea e transformation temperature in the p	ling) temperature pearlite stage							

Usual case hardening temperatures									
Grade of s	teel	а	t	D		с			
Symbol	Material number	Carburizing temperature 1) °C	Core hardening temperature ²) °C ^C ^C ^C		Quenchant	Tempering °C			
C 10 Ck 10 Ck 15 Cm 15 17 Cr 3 20 Cr 4 20 Cr 4 20 Cr 4 16 MnCr 5 16 MnCr 5 20 MnCr 5 20 MnCr 5 20 MnCr 5 20 MoCr 4 20 MoCr 4 22 CrMoS 3 5 21 NiCrMo 2 21 NiCrMoS 2 15 CrNi 6 17 CrNi 6	1.0301 1.1121 1.0401 1.1141 1.1140 1.7016 1.7027 1.7028 1.7131 1.7139 1.7147 1.7149 1.7321 1.7323 1.6523 1.6526 1.5919 1.6587	880 up to 980	880 up to 920 860 up to 900 830 up to	780 up to 820	With regard to the properties of the component, the selec- tion of the quenchant depends on the hardenability or case- hardenability of the steel, the shape and cross section of the work piece to be hardened, as well as on the effect of the quenchant.	150 up to 200			

 Decisive criteria for the determination of the carburizing temperature are mainly the required time of carburizing, the chosen carburizing agent, and the plant available, the provided course of process, as well as the required structural constitution. For direct hardening, carburizing usually is carried out at temperatures below 950 °C. In special cases, carburizing temperatures up to above 1000 °C are applied.

 In case of direct hardening, quenching is carried out either from the carburizing temperature or any lower temperature. In particular if there is a risk of warping, lower hardening temperatures are preferred. **Table of Contents Section 9**

Lubricating Oils	Page
Viscosity-Temperature-Diagram for Mineral Oils	100
Viscosity-Temperature-Diagram for Synthetic Oils of Polyglycole Base	101
Viscosity-Temperature-Diagram for Synthetic Oils of Poly- α -Olefine Base	102
- Kinematic Viscosity and Dynamic Viscosity	103
Viscosity Table for Mineral Oils	104

Lubricating Oils Viscosity-Temperature-Diagram for Mineral Oils

3,0

2,7

Lubricating Oils

3,0

2,7

Viscosity-Temperature-Diagram for Synthetic Oils of Poly- α -Olefine Base

Viscosity-temperature-diagram for mineral oils Viscosity-temperature-diagram for synthetic oils of poly- α -olefine base mm ^{*}/s(cSt) -18'C 40°C 50°C 100'C mm ^{*}/s(cSt) -18'C 40°C 50°C 100°C 300000 200000 (mm²/s) Kinematic viscosity (mm^{2/s}) 50000 50000 viscosity 4000 VG 1000 220 Kinematic 700 VG 460 VG 60 -25 -18 -14 -11 -4,5 4,5 4,0 4,0 3,5 3,5

-50-45-40-35-30-25-20-15-10-5 0 +5 10 15 20 25 30 40 50 60 70 80 90 100 110 120 130 140 150 160 (-18°C Temperature (°C) -

40 50 60 70

90 100 110 120 130 140 150 160

Temperature (°C) ----

-50-45-40-35-30-25-20-15-10-5 0 +5 10 15 20 25 30

-18°C

Lubricating Oils

Viscosity-Temperature-Diagram for Synthetic Oils of Polyglycole Base

Viscosity-temperature-diagram for synthetic oils of polyglycole base

Lubricating Oils

Kinematic Viscosity and Dynamic Viscosity for Mineral Oils at any Temperature

Kinematic viscosity ບ								
Quantities for the determination of the kinematic viscosity								
VG grade	W ₄₀ [–]	m [–]						
32 46 68 100 150	0.18066 0.22278 0.26424 0.30178 0.33813	3.7664 3.7231 3.6214 3.5562 3.4610						
220	0.36990	3.4020						
320 460 680	0.39900 0.42540 0.45225	3.3201 3.3151 3.2958						
1000 1500	0.47717 0.50192	3.2143 3.1775						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
1) T = t + 273.15 [K]								

Dynamic viscosity η								
$\eta = \upsilon \cdot \cdot 0.0$	01	(3)						
$= 15^{-}(t - t)^{-1}$	15) • 0.0007	(4)						
t [°C]: ₁₅ [kg/dm ³]: [kg/dm ³]:	temperature density at 15 °C density							
ບ [cSt]: ກ [Ns/m²]:	kinematic viscosity							

Density $_{15}$ in kg/dm ³ of lubricating oils for gear units) (Example) $^{2)}$									
VG grade	68	100	150	220	320	460	680		
ARAL Degol BG	0.890	0.890	0.895	0.895	0.900	0.900	0.905		
ESSO Spartan EP	0.880	0.885	0.890	0.895	0.900	0.905	0.920		
MOBIL OIL Mobilgear 626 636	0.882	0.885	0.889	0.876	0.900	0.905	0.910		
OPTIMOL Optigear BM	0.890	0.901	0.904	0.910	0.917	0.920	0.930		
TRIBOL Tribol 1100	0.890	0.895	0.901	0.907	0.912	0.920	0.934		

2) Mineral base gear oils in accordance with designation CLP as per DIN 51502. These oils comply with the minimum requirements as specified in DIN 51517 Part 3. They are suitable for operating temperatures from -10 °C up to +90 °C (briefly +100 °C).

									-	
150.1/0	Approx.	Mea v	n viscosi viscositie	ty (40 °C s in mm²	2) and ap 2/s (cSt) a	Saybolt universal seconds	AGMA lubricant	App assigr t	orox. nment o	
DIN 51519	assignment to previous DIN 51502	20 C	40 C	50	С	100 C	(SSU) at 40 °C (mean value)	N° at 40 °C	motor oils	motor- car gear oils
		cSt	cSt	cSt	Engler	cSt	1)	1)	SAE	SAE
5	2	8 (1.7 E)	4.6	4	1.3	1.5				
7	4	12 (2 E)	6.8	5	1.4	2.0				
10	9	21 (3 E)	10	8	1.7	2.5				
15	_	34	15	11	1.9	3.5			5W	
22	16	55	22	15	2.3	4.5			10 W	70 W
32	25	88	32	21	3	5.5			10 00	75 W
46		137	46	30	4	6.5	214	1 EP	15 W	
68	36	219	68	43	6	8.5	316	2.2 EP	20 W 20	80 W
400	49	0.45	400	64	0	44	404	0.0 50	20	
100	68	345	100	61	8	11	464	3.3 EP	30	85 W
150	92	550	150	90	12	15	696	4.4 EP	40	
220	114 144	865	220	125	16	19	1020	5.5 EP	50	90
320	169	1340	320	180	24	24	1484	6.6 EP		
460	225	2060	460	250	33	30	2132	7 EP		140
680	324	3270	680	360	47	40	3152	8 EP		
1000		5170	1000	510	67	50				<u> </u>
1500		8400	1500	740	98	65				250
1) Appr	ı oximate com	i parative	value te	o ISO V	G grade	s	I	I	I	<u> </u>

Table of Contents Section 10

Cylindrical Gear Units Symbols and Units General Introduction	Page 106/107 108
Geometry of Involute Gears Concepts and Parameters Associated With Involute Teeth Reference Profile Module Tool Profile Generating Tooth Flanks Concepts and Parameters Associated With Cylindrical Gears Geometric Definitions Pitch Addendum Modification Concepts and Parameters Associated With a Cylindrical Gear Pair Definitions Mating Quantities Contact Ratios Summary of the Most Important Formulae Gear Teeth Modifications	108 109 109 110 111 111 111 112 113 113 113 113 114 115-117 118/119
Load Carrying Capacity of Involute Gears Scope of Application and Purpose Basic Details General Factors Application Factor Dynamic Factor Face Load Factor Transverse Load Factor Tooth Flank Load Carrying Capacity Effective Hertzian Pressure Permissible Hertzian Pressure Tooth Root Load Carrying Capacity Effective Tooth Root Stress Permissible Tooth Root Stress Safety Factors Calculation Example	119/120 120/121 122 122 122 122 123 123 123/124 124/125 126 126 126/127
Gear Unit Types Standard Designs Load Sharing Gear Units Comparisons Load Value Referred Torques Efficiencies Example	127 127 127/128 128 129 130 130
Noise Emitted by Gear Units Definitions Measurements Determination via Sound Pressure Determination via Sound Intensity Prediction Possibilities of Influencing	131 132 132 132/133 133 133

а	mm	Centre distance	n	1/min	Speed
a _d	mm	Reference centre distance	р	N/mm ²	Sound pressure
b	mm	Facewidth	р	mm	Pitch on the reference circle
		Bottom clearance between	P _{bt}	mm	Pitch on the base circle
с _р	mm	standard basic rack tooth profile and counter profile	p _e	mm	Normal base pitch
d	mm	Reference diameter	p _{en}	mm	Normal base pitch at a point
da	mm	Tip diameter	Pet	mm	Normal transverse pitch
d _b	mm	Base diameter	p _{ex}	mm	Axial pitch
d _f	mm	Root diameter	D+	mm	Transverse base pitch, refer-
d _w	mm	Pitch diameter			ence circle pitch
e	mm	Spacewidth on the reference cylinder	PrPO	mm	Protuberance value on the tool's standard basic rack tooth profile
e _p	mm	Spacewidth on the standard basic rack tooth profile	q	mm	Machining allowance on the cylindrical gear tooth flanks
f	Hz	Frequency	r	mm	Reference circle radius, ra-
gα	mm	Length of path of contact			dius Tip rediue
h	mm	Tooth depth	la		Receive
ha	mm	Addendum	۲b	mm	Base radius
h _{aP}	mm	Addendum of the standard basic rack tooth profile	r _w	mm	circle
h _{aPO}	mm	Addendum of the tool's stand- ard basic rack tooth profile	S	mm	Tooth thickness on the reference circle
h _f	mm	Dedendum	s _{an}	mm	Tooth thickness on the tip circle
h _{fP}	mm	Dedendum of the standard basic rack tooth profile	s _p	mm	Tooth thickness of the stand- ard basic rack tooth profile
h _{fPO}	mm	Dedendum of the tool's stand- ard basic rack tooth profile	s _{PO}	mm	Tooth thickness of the tool's standard basic rack tooth
h _p	mm	Tooth depth of the standard basic rack tooth profile			profile
		Tooth depth of the tool's stand-	u	-	Gear ratio
h _{PO}	mm	ard basic rack tooth profile	v	m/s	reference circle
harpo	mm	Protuberance height of the tool's standard basic rack	w	N/mm	Line load
··piPO		tooth profile	x	-	Addendum modification coefficient
h _{wP}	mm	basic rack tooth profile and the counter profile	х _Е	-	Generating addendum modification coefficient
k	-	Tip diameter modification coefficient	z	-	Number of teeth
m	mm	Module	Α	m ²	Gear teeth surface
m _n	mm	Normal module	As	mm	Tooth thickness deviation
m _t	mm	Transverse module	BL	N/mm ²	Load value
-	1		. –		

Cylindrical Gear Units Symbols and units for cylindrical gear units

D	mm	Construction dimension	Z _X	-	Size factor
Fn	Ν	Load		D	Transverse pressure angle at
Ft	Ν	Nominal peripheral force at the reference circle	α	Degree	a point; Pressure angle
G	kg	Gear unit weight	^	rad	Angle α in the circular measure $+ \mu = 180$
HV1	-	Vickers hardness at F = 9.81 N	α_{at}	Degree	Transverse pressure angle at the tip circle
K _A	-	Application factor	α _n	Degree	Normal pressure angle
K _{Fα}	_	Transverse load factor (for tooth root stress)	α _P	Degree	Pressure angle at a point of the standard basic rack tooth
$K_{F\beta}$	_	Face load factor (for tooth root stress)			Pressure angle at a point of
K _{Hα}	_	Transverse load factor (for contact stress)	α _{PO}	Degree	the tool's standard basic rack tooth profile
K _{Hβ}	_	Face load factor (for contact stress)	α_{prPO}	Degree	Protuberance pressure angle at a point
K _v	-	Dynamic factor	α_t	Degree	Transverse pressure angle at the reference circle
L_{pA}	dB	Sound pressure level A	Quet	Dearee	Working transverse pressure
L _{WA}	dB	Sound power level A	wi	209.00	angle at the pitch circle
Р	kW	Nominal power rating of driven machine	β	Degree	Helix angle at the reference circle
R ₇	um	Mean peak-to-valley rough-	β_b	Degree	Base helix angle
	P	ness	εα	-	Transverse contact ratio
S_F	-	Factor of safety from tooth breakage	εβ	-	Overlap ratio
S _H	_	Factor of safety from pitting	εγ	-	Total contact ratio
S	m ²	Enveloping surface	η	-	Efficiency
Т	Nm	Torque	ζ	Degree	Working angle of the involute
		Lubricating oil viscosity	π	mm	Radius of curvature
V ₄₀	mm²/s	at 40 °C	π		Tip radius of curvature of the
Y_{β}	-	Helix angle factor	aPO	mm	tool's standard basic rack
Yε	-	Contact ratio factor	-		Root radius of curvature of the
Y_{FS}	-	Tip factor	π fPO	mm	tool's standard basic rack
Υ _R	-	Roughness factor	6	N/mm ²	Effective Hertzian pressure
Y_X	_	Size factor	Ч	1 N/11111	
Zβ	-	Helix angle factor	σ_{Hlim}	N/mm ²	contact stress
			GUD	N/mm ²	Allowable Hertzian pressure
Z_{ϵ}	-	Contact ratio factor	OHP		Allowable Hertzlah pressure
Ζ _ε Ζ _Η	-	Contact ratio factor Zone factor	σ _F	N/mm ²	Effective tooth root stress
Ζ _ε Ζ _Η Ζ _L	- - -	Contact ratio factor Zone factor Lubricant factor	σ _F σ _{Flim}	N/mm ² N/mm ²	Effective tooth root stress Bending stress number

Note: The unit rad may be replaced by 1.

1. Cylindrical gear units

1.1 Introduction

In the industry, mainly gear units with case hardened and fine-machined gears are used for torgue and speed adaptation of prime movers and driven machines. After carburising and hardening, the tooth flanks are fine-machined by hobbing or profile grinding or removing material (by means of shaping or generating tools coated with mechanically resistant material). In comparison with other gear units, which, for example, have quenched and tempered or nitrided gears, gear units with case hardened gears have higher power capacities, i.e. they require less space for the same speeds and torques. Further, gear units have the best efficiencies. Motion is transmitted without slip at constant speed. As a rule, an infinitely variable change-speed gear unit with primary or secondary gear stages presents the most economical solution even in case of variable speed control.

In industrial gear units mainly involute gears are used. Compared with other tooth profiles, the technical and economical advantages are basically:

- Simple manufacture with straight-sided flanked tools;
- The same tool for all numbers of teeth;
- Generating different tooth profiles and centre distances with the same number of teeth by means of the same tool by addendum modification;
- Uniform transmission of motion even in case of centre distance errors from the nominal value;
- The direction of the normal force of teeth remains constant during meshing;
- Advanced stage of development;
- Good availability on the market.

When load sharing gear units are used, output torques can be doubled or tripled in comparison

Tip line

with gear units without load sharing. Load sharing gear units mostly have one input and one output shaft. Inside the gear unit the load is distributed and then brought together again on the output shaft gear. The uniform sharing of the load between the individual branches is achieved by special design measures.

1.2 Geometry of involute gears

The most important concepts and parameters associated with cylindrical gears and cylindrical gear pairs with involute teeth in accordance with DIN 3960 are represented in sections 1.2.1 to 1.2.4. /1/

1.2.1 Concepts and parameters associated with involute teeth

1.2.1.1 Standard basic rack tooth profile

The standard basic rack tooth profile is the normal section through the teeth of the basic rack which is produced from an external gear tooth system with an infinitely large diameter and an infinitely large number of teeth. From figure 1 follows:

- The flanks of the standard basic rack tooth profile are straight lines and are located symmetrically below the pressure angle at a point α_P to the tooth centre line;
- Between module m and pitch p the relation is $p = \pi m$;
- The nominal dimensions of tooth thickness and spacewidth on the datum line are equal, i.e. sp = ep = p/2;
- The bottom clearance cp between basic rack tooth profile and counter profile is 0.1 m up to 0.4 m;
 The addendum is fixed by h = m the dedender.
- The addendum is fixed by $h_{aP} = m$, the dedendum by $h_{fP} = m + c_P$ and thus, the tooth depth by $h_P = 2 m + c_P$;
- The working depth of basic rack tooth profile and counter profile is $h_{wP} = 2 \text{ m}$.

Standard basic rack tooth profile

Counter profile

Datum line

Root line

Tooth root surface

Fillet

1.2.1.2 Module

The module m of the standard basic rack tooth profile is the module in the normal section m_n of the gear teeth. For a helical gear with helix angle β on the reference circle, the transverse module

in a transverse section is $m_t = m_n/cos\beta$. For a spur gear $\beta = 0$ and the module is $m = m_n = m_t$. In order to limit the number of the required gear cutting tools, module m has been standardized in preferred series 1 and 2, see table 1.

Table 1 Selection of some modules m in mm (acc. to DIN 780)																
Series 1	1	1.25	1.5	2	2.5	3	4	5	6	8	10	12	16	20	25	32
Series 2			1.75			3.	54	.5	7	7 9)	14	4 1	8 2	2 2	28

1.2.1.3 Tool reference profile

The tool reference profile according to figure 2a is the counter profile of the standard basic rack tooth profile according to figure 1. For industrial gear units, the pressure angle at a point of the tool reference profile $\alpha_{PO} = \alpha_P$ is 20°, as a rule. The tooth thickness s_{PO} of the tool on the tool datum line depends on the stage of machining. The pre-machining tool leaves on both flanks of the teeth a machining allowance q for finishmachining. Therefore, the tooth thickness for pre-machining tools is $s_{PO} < p/2$, and for finishmachining tools $s_{PO} = p/2$.

The pre-machining tool generates the root diameter and the fillet on a cylindrical gear. The finish-machining tool removes the machining allowance on the flanks, however, normally it does not touch the root circle - like on the tooth profile in figure 3a.

Between pre- and finish- machining, cylindrical gears are subjected to a heat treatment which, as a rule, leads to warping of the teeth and growing of the root and tip circles.

Especially for cylindrical gears with a relatively large number of teeth or a small module there is a risk of generating a notch in the root on finish machining. To avoid this, pre-machining tools are provided with protuberance flanks as shown in figure 2b. They generate a root undercut on the gear, see figure 3b. On the tool, protuberance value pr_{PO}, protuberance pressure angle at a point α_{prPO} , as well as the tip radius of curvature μ_{aPO} must be so dimensioned that the active tooth profile on the gear will not be reduced and the tooth root will not be weakened too much.

On cylindrical gears with small modules one often accepts on purpose a notch in the root if its distance to the root circle is large enough and thus the tooth root load carrying capacity is not impaired by a notch effect, figure 3c. In order to prevent the tip circle of the mating gear from touching the fillet it is necessary that a check for meshing interferences is carried out on the gear pair. /1/

b) For pre-machining with root undercut (protuberance)

Figure 1 Basic rack tooth profiles for involute teeth of cylindrical gears (acc. to DIN 867)

p

αn

ep

Sp

 $\alpha_{\rm c}$

Tooth centre line

1.2.1.4 Generating tooth flanks

With the development of the envelope, an envelope line of the base cylinder with the base diameter d_b generates the involute surface of a spur gear.

Å straight line inclined by a base helix angle β_b to the envelope line in the developed envelope is the generator of an involute surface (involute helicoid) of a helical gear, figure 4.

The involute which is always lying in a transverse section, figure 5, is described by the transverse

equations inv α = tan α - $^{\circ}$ (1)

$r = r_b / \cos \alpha$	(2)

 $r_b=d_b/2$ is the base radius. The angle inv α is termed involute function, and the angle

pressure angle at a point α and radius r in the

 $\zeta = \uparrow + inv\alpha = tan\alpha$ is termed working angle.

1.2.2 Concepts and parameters associated with cylindrical gears

1.2.2.1 Geometric definitions

In figure 6 the most important geometric quantities of a cylindrical gear are shown.

The reference circle is the intersection of the reference cylinder with a plane of transverse section. When generating tooth flanks, the straight pitch line of the tool rolls off at the reference circle. Therefore, the reference circle periphery corresponds to the product of pitch p and number of teeth z, i.e. $\pi d = p z$. Since $m_t = p/\pi$, the equation for the reference diameter thus is $d = m_t z$. Many geometric quantities of the cylindrical gear are referred to the reference circle.

For a helical gear, at the point of intersection of the involute with the reference circle, the transverse pressure angle at a point α in the transverse section is termed transverse pressure angle α_t , see figures 5 and 7. If a tangent line is put against the involute surface in the normal section at the point of intersection with the reference circle, the corresponding angle is termed normal pressure angle α_n ; this is equal to the pressure angle α_{PO} of the tool. The interrelationship with the helix angle β at the reference circle is $\tan\alpha_n = \cos\beta \tan\alpha_t$. On a spur gear $\alpha_n = \alpha_n$

Between the base helix angle β_b and the helix angle β on the reference circle the relationship is $\sin\beta_b = \cos\alpha_n \sin\beta$. The base diameter d_b is given by the reference diameter d, by d_b = d $\cos\alpha_t$. In the case of internal gears, the number of teeth z and thus also the diameters d, d_b, d_a, d_f are negative values.

1.2.2.2 Pitches

The pitch p_t of a helical gear (p in the case of a spur gear) lying in a transverse section is the length of the reference circle arc between two successive right or left flanks, see figures 6 and 7. With the number of teeth z results $p_t = \pi d/z = \pi m_t$.

The normal transverse pitch p_{et} of a helical gear is equal to the pitch on the basic circle p_{bt} , thus $p_{et} = p_{bt} = \pi d_b/z$. Hence, in the normal section the normal base pitch at a point $p_{en} = p_{et} \cos\beta_b$ is resulting from it, and in the axial section the axial pitch $p_{ex} = p_{et}/\tan\beta_b$, see figure 13.

1.2.2.3 Addendum modification

When generating tooth flanks on a cylindrical gear by means of a tooth-rack-like tool (e.g. a hob), a straight pitch line parallel to the datum line of tool rolls off on the reference circle. The distance $(x \cdot m_n)$ between the straight pitch line and the datum line of tool is the addendum modification, and x is the addendum modification coefficient, see figure 8.

An addendum modification is positive, if the datum line of tool is displaced from the reference circle towards the tip, and it is negative if the datum line is displaced towards the root of the gear. This is true for both external and internal gears. In the case of internal gears the tip points to the inside. An addendum modification for external gears should be carried through approximately within the limits as shown in figure 9.

The addendum modification limits x_{min} and x_{max} are represented dependent on the virtual number of teeth $z_n = z/(\cos\beta\cos^2\beta_b)$. The upper limit x_{max} takes into account the intersection circle of the teeth and applies to a normal crest width in the normal section of $s_{an} = 0.25 m_n$. When falling below the lower limit x_{min} this results in an undercut which shortens the usable involute and weakens the tooth root.

A positive addendum modification results in a greater tooth root width and thus in an increase in the tooth root carrying capacity. In the case of small numbers of teeth this has a considerably stronger effect than in the case of larger ones. One mostly strives for a greater addendum modification on pinions than on gears in order to achieve equal tooth root carrying capacities for both gears. see figure 19.

Further criteria for the determination of addendum modification are contained in /2/, /3/, and /4/. The addendum modification coefficient x refers to gear teeth free of backlash and deviations. In order to take into account tooth thickness deviation A_s (for backlash and manufacturing tolerances) and machining allowances q (for premachining), one has to give the following generating addendum modification coefficient for the manufacture of a cylindrical gear:

Figure 8 Different positions of the datum line of tool in relation to the straight pitch line through pitch point C.

- a) Zero addendum modification; x = 0
- b) Negative addendum modification; x < 0

c) Positive addendum modification; x > 0

Figure 9 Addendum modification limit x_{max} (intersection circle) and x_{min} (undercut limit) for external gears dependent on the virtual number of teeth zn (for internal gears, see /1/ and /3/).

1.2.3 Concepts and parameters associated with a cylindrical gear pair

1.2.3.1 Terms

The mating of two external cylindrical gears (external gears) gives an external gear pair. In the case of a helical external gear pair one gear has left-handed and the other one right-handed flank direction.

The mating of an external cylindrical gear with an internal cylindrical gear (internal gear) gives an internal gear pair. In the case of a helical internal gear pair, both gears have the same flank direction, that is either right-handed or left-handed. The subscript 1 is used for the size of the smaller gear (pinion), and the subscript 2 for the larger gear (wheel or internal gear).

In the case of a zero gear pair both gears have as addendum modification coefficient $x_1 = x_2 = 0$ (zero gears).

In the case of a V-zero gear pair, both gears have addendum modifications (V-gears), that is with $x_1 + x_2 = 0$, i.e. $x_1 = -x_2$.

For a \overline{V} -gear pair, the sum is not equal to zero, i.e. $x_1 + x_2 \neq 0$. One of the cylindrical gears in this case may, however, have an addendum modification x = 0.

1.2.3.2 Mating quantities

The gear ratio of a gear pair is the ratio of the number of teeth of the gear z_2 to the number of teeth of the pinion z_1 , thus $u = z_2/z_1$. Working pitch circles with diameter $d_w = 2r_w$ are those transverse intersection circles of a cylindrical gear pair, which have the same circumferential speed at their mutual contact point (pitch point C), figure 10. The working pitch circles divide the centre distance $a = r_{w1} + r_{w2}$ in the ratio of the tooth numbers, thus $d_{w1} = 2 a/(u + 1)$ and $d_{w2} = 2 a u/(u + 1)$.

In the case of both a zero gear pair and a V-zero gear pair, the centre distance is equal to the zero centre distance $a_d = (d_1 + d_2)/2$, and the pitch circles are simultaneously the reference circles, i.e. $d_w = d$. However, in the case of a V-gear pair the centre distance is not equal to the zero centre distance, and the pitch circles are not simultaneously the reference circles.

If in the case of V-gear pairs the bottom clearance c_p corresponding to the standard basic rack tooth profile is to be retained (which is not absolutely necessary), then an addendum modification is to be carried out. The addendum modification factor is $k = (a - a_d)/m_n - (x_1 + x_2)$. For zero gear pairs and V-zero gear pairs k = 0. In the case of external gear pairs k < 0, i.e. the tip diameters of both gears become smaller. In the case of internal gear pairs k > 0, i.e. the tip diameters of both gears become larger (on an internal gear with negative tip diameter the

absolute value becomes smaller).

In a cylindrical gear pair either the left or the right flanks of the teeth contact each other on the line of action. Changing the flanks results in a line of action each lying symmetrical in relation to the centre line through O_1O_2 . The line of action with contacting left flanks in figure 10 is the tangent to the two base circles at points T_1 and T_2 . With the common tangent on the pitch circles it includes the working pressure angle α_{wt} .

The working pressure angle α_{wt} is the transverse pressure angle at a point belonging to the working pitch circle. According to figure 10 it is determined by $\cos \alpha_{wt} = d_{b1}/d_{w1} = d_{b2}/d_{w2}$. In the case of zero gear pairs and V-zero gear pairs, the working pressure angle is equal to the transverse pressure angle on the reference circle, i.e. $\alpha_{wt} = \alpha_t$.

The length of path of contact g_{α} is that part of the line of action which is limited by the two tip circles of the cylindrical gears, figure 11.

The starting point A of the length of path of contact is the point at which the line of action intersects the tip circle of the driven gear, and the finishing point E is the point at which the line of action intersects the tip circle of the driving gear.

112

1.2.3.3 Contact ratios

The transverse contact ratio ε_{α} in the transverse section is the ratio of the length of path of contact g_{α} to the normal transverse pitch p_{et} , i.e. $\varepsilon_{\alpha} = g_{\alpha}/p_{et}$, see figure 12.

In the case of spur gear pairs, the transverse contact ratio gives the average number of pairs of teeth meshing during the time of contact of a tooth pair. According to figure 12, the left-hand tooth pair is in the individual point of contact D while the right-hand tooth pair gets into mesh at the starting point of engagement A. The righthand tooth pair is in the individual point of contact B when the left-hand tooth pair leaves the mesh at the finishing point of engagement E. Along the individual length of path of contact BD one tooth pair is in mesh, and along the double lengths of paths of contact AB and DE two pairs of teeth are simultaneously in mesh. In the case of helical gear pairs it is possible to achieve that always two or more pairs of teeth are in mesh simultaneously. The overlap ratio ε_{β} gives the contact ratio, owing to the helix of the teeth, as the ratio of the facewidth b to the axial pitch p_{ex} , i.e. $\varepsilon_{\beta} = b/p_{ex}$, see figure 13.

The total contact ratio ε_{γ} is the sum of transverse contact ratio and overlap ratio, i.e. $\varepsilon_{\gamma} = \varepsilon_{\alpha} + \varepsilon_{\beta}$.

With an increasing total contact ratio, the load carrying capacity increases, as a rule, while the generation of noise is reduced.

Figure 12 Single and double contact region in the transverse section of an external gear pair

- B, D Individual points of contact
- A, E Starting and finishing point of engagement, respectively
- C Pitch point

Figure 13 Pitches in the plane of action

A Starting point of engagement E Finishing point of engagement

1.2.4 Summary of the most important formulae

Tables 2 and 3 contain the most important formulae for the determination of sizes of a cylindrical gear and a cylindrical gear pair, and this for both external and internal gear pairs.

The following rules for signs are to be observed: In the case of internal gear pairs the number of teeth z_2 of the internal gear is a negative quantity. Thus, also the centre distance a or a_d and the gear ratio u as well as the diameters d_2 , d_{a2} , d_{b2} , d_{f2} , d_{w2} and the virtual number of teeth z_{n2} are negative.

When designing a cylindrical gear pair for a gear stage, from the output quantities of tables 2 and 3 only the normal pressure angle α_n and the gear ratio u are given, as a rule. The number of teeth of

the pinion is determined with regard to silent running and a balanced foot and flank load carrying capacity, at approx. $z_1 = 18 \dots 23$. If a high foot load carrying capacity is required, the number may be reduced to $z_1 = 10$. For the helix angle, $\beta = 10$ up to 15 degree is given, in exceptional cases also up to 30 degree. The addendum modification limits as shown in figure 9 are to be observed. On the pinion, the addendum modification coefficient should be within the range of $x_1 = 0.2$ to 0.6 and from lul > 2 the width within the range $b_1 = (0.35 \text{ to } 0.45)$ a. Centre distance a is determined either by the constructional conditions.

Cylindrical Gear Units

Geometry of Involute Gears

Table 2 Parameters for a cylindrical gear	*)			
$\begin{array}{c cccc} \textbf{Output quantities:} & & \\ m_n & mm & normal module \\ \alpha_n & degree & normal pressure ar \\ \beta & degree & reference helix and \\ z & - & number of teeth *) \\ x & - & addendum modificat \\ x_E & - & generating addend \\ h_{aPO} & mm & addendum of the top \\ \end{array}$	ngle gle ation coefficient um modification coefficient, see equation (3) pol			
Item	Formula			
Transverse module	$m_t = \frac{m_n}{\cos\beta}$			
Transverse pressure angle	$\tan \alpha_t = \frac{\tan \alpha_n}{\cos \beta}$			
Base helix angle	$\sin\beta_b = \sin\beta \cos\alpha_n$			
Reference diameter	d = m _t z			
Tip diameter (k see table 3)	$d_a = d + 2 m_n (1 + x + k)$			
Root diameter	$d_f = d - 2 (h_{aPO} - m_n x_E)$			
Base diameter	$d_b = d \cos \alpha_t$			
Transverse pitch	$p_t = \frac{\pi d}{z} = \pi m_t$			
Transverse pitch on path of contact; Transverse base pitch	$p_{et} = p_{bt} = \frac{\pi d_b}{z} = p_t \cos\alpha_t$			
Transverse pressure angle at tip circle	$\cos \alpha_{at} = \frac{d_b}{d_a}$			
Transverse tooth thickness on the pitch circle	$s_t = m_t \left(\frac{\pi}{2} + 2 x \tan \alpha_n \right)$			
Normal tooth thickness on the pitch circle	$s_n = s_t \cos\beta$			
Transverse tooth thickness on the addendum circle	$s_{at} = d_a \left(\frac{s_t}{d} + inv\alpha_t - inv\alpha_{at}\right)^{**}$			
Virtual number of teeth	$z_n = \frac{z}{\cos\beta \ \cos^2\beta_b}$			

*) For an internal gear, z is to be used as a negative quantity. **) For invα, see equation (1).

Table 3 Parameters for a cylindrical gear pair *) Output quantities: The parameters for pinion and wheel according to table 2 must be given, further the facewidths b1 and b₂, as well as either the centre distance a or the sum of the addendum modification coefficients x₁ + x_{2.} Item Formula $u = \frac{z_2}{z_1}$ Gear ratio $\cos \alpha_{wt} = \frac{m_t}{2a} (z_1 + z_2) \cos \alpha_t$ Working transverse pressure angle ("a" given) $x_1 + x_2 = \frac{z_1 + z_2}{2 \tan \alpha_n} (inv\alpha_{wt} - inv\alpha_t)$ Sum of the addendum modification coefficients ("a" given) Working transverse pressure angle $inv\alpha_{wt} = 2 \frac{x_1 + x_2}{z_1 + z_2} \tan \alpha_n + inv\alpha_t$ $(x_1 + x_2 \text{ given})$ $a = \frac{m_t}{2} (z_1 + z_2) \frac{\cos \alpha_t}{\cos \alpha_{wt}}$ Centre distance $(x_1 + x_2 given)$ $a_d = \frac{m_t}{2} (z_1 + z_2)$ Reference centre distance $k = \frac{a - a_d}{m_n} - (x_1 + x_2)$ Addendum modification factor **) $d_{w1} = \frac{2a}{u+1} = d_1 \frac{\cos \alpha_t}{\cos \alpha_{wt}}$ Working pitch circle diameter of the pinion $d_{w2} = \frac{2au}{u+1} = d_2 \frac{\cos\alpha_t}{\cos\alpha_{wt}}$ Working pitch circle diameter of the gear $g_{\alpha} = \frac{1}{2} \left(\sqrt{d_{a1}^2 - d_{b1}^2} + \frac{u}{|u|} \sqrt{d_{a2}^2 - d_{b2}^2} \right) - a \sin \alpha_{wt}$ Length of path of contact g_α Pet Transverse contact ratio $\epsilon_{\alpha} =$ b tanβ_b Overlap ratio $b = min (b_1, b_2)$ $\epsilon_{\beta} =$ pet Total contact ratio $\varepsilon_{\gamma} = \varepsilon_{\alpha} + \varepsilon_{\beta}$

*) For internal gear pairs, z₂ and a are to be used as negative quantities. **) See subsection 1.2.3.2.

1.2.5 Tooth corrections

The parameters given in the above subsections 1.2.1 to 1.2.4 refer to non-deviating cylindrical gears. Because of the high-tensile gear materials, however, a high load utilization of the gear units is possible. Noticeable deformations of the elastic gear unit components result from it. The deflection at the tooth tips is, as a rule, a multiple of the manufacturing form errors. This leads to meshing interferences at the entering and leaving sides, see figure 14. There is a negative effect on the load carrying capacity and generation of noise.

Further, the load causes bending and twisting of pinion and wheel shaft, pinion and wheel body, as well as settling of bearings, and housing deformations. This results in skewing of the tooth flanks which often amounts considerably higher than the tooth trace deviations caused by manufacture, see figure 15. Non-uniform load carrying occurs along the face width which also has a negative effect on the load carrying capacity and generation of noise.

The running-in wear of case hardened gears amounts to a few micrometers only and cannot compensate the mentioned deviations. In order to restore the high load carrying capacity of case hardened gears and reduce the generation of noise, intentional deviations from the involute (profile correction) and from the theoretical tooth trace (longitudinal correction) are produced in order to attain nearly ideal geometries with uniform load distribution under load again.

The load-related form corrections are calculated and made for one load only - as a rule for 70 ... 100% of the permanently acting nominal load -/5, 6, 7/. At low partial load, contact patterns which do not cover the entire tooth depth and facewidth are achieved. This has to be taken into consideration especially in the case of checks of contact patterns carried out under low loads. Under partial load, however, the local maximum load rise is always lower than the theoretical uniform load distribution under full load. In the case of modified gear teeth, the contact ratio is reduced under partial load because of incomplete carrying portions, making the noise generating levels increase in the lower part load range. With increasing load, the carrying portions and thus the contact ratio increase so that the generating levels drop. Gear pairs which are only slightly loaded do not require any modification.

Figure 15 Deformations and manufacturing deviations on a gear unit shaft

In figure 16, usual profile and longitudinal corrections are illustrated. In the case of profile correction, the flanks on pinion and wheel are relieved at the tips by an amount equal to the length they are protruding at the entering and leaving sides due to the bending deflection of the teeth. Root relief may be applied instead of tip relief which, however, is much more expensive. Thus, a gradual load increase is achieved on the tooth get**Cylindrical Gear Units** Geometry of Involute Gears Load Carrying Capacity of Involute Gears

ting into engagement, and a load reduction on the tooth leaving the engagement. In the case of longitudinal correction, the tooth trace relief often is superposed by a symmetric longitudinal crowning. With it, uniform load carrying along the face width and a reduction in load concentration at the tooth ends during axial displacements is attained.

1.3 Load carrying capacity of involute gears

1.3.1 Scope of application and purpose

The calculation of the load carrying capacity of cylindrical gears is generally carried out in accordance with the calculation method according to DIN 3990 /8/ (identical with ISO 6336) which takes into account pitting, tooth root bending stress and scoring as load carrying limits. Because of the relatively large scope of standards, the calculation in accordance with this method may be carried out only by using EDP programs. As a rule, gear unit manufacturers have such a tool at hand. The standard work is the FVA-Stirnradprogramm /9/ which includes further calculation methods, for instance, according to Niemann, AGMA, British Standard, and other.

In DIN 3990, different methods A, B, C ... are suggested for the determination of individual factors, where method A is more exact but also more time-consuming than method B, etc. The application standard /10/ according to DIN 3990 is based on simplified methods.

Because of its - even though limited - universal validity it still is relatively time-consuming.

The following calculation method for pitting resistance and tooth strength of case-hardened cylindrical gears is a further simplification if compared with the application standard, however, without losing some of its meaning. Certain conditions must be adhered to in order to attain high load carrying capacities which also results in preventing scuffing. Therefore, a calculation of load carrying capacity for scuffing will not be considered in the following. It has to be expressly emphasized that for the load carrying capacity of gear units the exact calculation method - compared with the simplified one - is always more meaningful and therefore is exclusively decisive in borderline cases.

Design, selection of material, manufacture, heat treatment and operation of industrial gear units are subject to certain rules which lead to a long service life of the cylindrical gears. Those rules are:

- Gear teeth geometry acc. to DIN 3960;
- Cylindrical gears out of case-hardened steel; Tooth flanks in DIN quality 6 or better, fine machined;
- Quality of material and heat treatment proved by quality inspections acc. to DIN 3990 /11/;
- Effective case depth after carburizing according to instructions /12/ with surface hardnesses of 58 ... 62 HRC;
- Gears with required tooth corrections and without harmful notches in the tooth root;
- Gear unit designed for fatigue strength, i.e. life factors $Z_{NT} = Y_{NT} = 1.0$;
- − Flank fatigue strength $\sigma_{Hlim} \ge 1,200 \text{ N/mm}^2$;
- Subcritical operating range, i.e. pitch circle velocity lower than approx. 35 m/s;
- Sufficient supply of lubricating oil;
- Use of prescribed gear oils with sufficient scuffing load capacity (criteria stage ≥ 12) and grey staining load capacity (criteria stage ≥ 10);
- Maximum operating temperature 95 °C.

If these requirements are met, a number of factors can be definitely given for the calculation of the load carrying capacity according to DIN 3990, so that the calculation procedure is partly considerably simplified. Non-observance of the above requirements, however, does not necessarily mean that the load carrying capacity is reduced. In case of doubt one should, however, carry out the calculation in accordance with the more exact method.

1.3.2 Basic details

The calculation of the load carrying capacity is based on the nominal torque of the driven machine. Alternatively, one can also start from the nominal torque of the prime mover if this corresponds with the torque requirement of the driven machine.

In order to be able to carry out the calculation for a cylindrical gear stage, the details listed in table 4 must be given in the units mentioned in the table. The geometric quantities are calculated according to tables 2 and 3. Usually, they are contained in the workshop drawings for cylindrical gears.

S	
Meaning	Unit
Power rating	kW
Pinion speed	1/min
Centre distance	mm
Normal module	mm
Tip diameter of the pinion	mm
Tip diameter of the wheel	mm
Facewidth of the pinion	mm
Facewidth of the wheel	mm
Number of teeth of the pinion	_
Number of teeth of the wheel	-
Addendum modification coefficient of the pinion	_
Addendum modification coefficient of the wheel	_
Normal pressure angle	Degree
Reference helix angle	Degree
Kinematic viscosity of lubricating oil at 40 °C	cSt
Peak-to-valley height on pinion flank	μm
Peak-to-valley height on wheel flank	μm
	Meaning Power rating Pinion speed Centre distance Normal module Tip diameter of the pinion Tip diameter of the wheel Facewidth of the pinion Facewidth of the pinion Reference helix angle Reference helix angle Kinematic viscosity of lubricating oil at 40 °C Peak-to-valley height on wheel flank

Cylindrical Gear Units Load Carrying Capacity of Involute Gears

In the further course of the calculation, the quantities listed in table 5 are required. They are derived from the basic details according to table 4.

Table 5 Derived quantities		
Designation	Relation	Unit
Gear ratio	$u = z_2/z_1$	-
Reference diameter of the pinion	$d_1 = z_1 m_n / \cos\beta$	mm
Transverse tangential force at pinion reference circle	F _t = 19.1 • 10 ⁶ P/(d ₁ n ₁)	N
Circumferential speed at reference circle	$v = \pi d_1 n_1 / 60 000$	m/s
Base helix angle	$\beta_{\rm b} = \arcsin(\cos\alpha_{\rm n} \sin\beta)$	Degree
Virtual number of teeth of the pinion	$z_{n1} = z_1 / (\cos\beta \cos^2\beta_b)$	_
Virtual number of teeth of the wheel	$z_{n2} = z_2 / (\cos\beta \cos^2\beta_b)$	_
Transverse module	$m_t = m_n / \cos\beta$	mm
Transverse pressure angle	$\alpha_t = \arctan(\tan \alpha_n / \cos \beta)$	Degree
Working transverse pressure angle	$\alpha_{wt} = \arccos\left[(z_1 + z_2) m_t \cos\alpha_t / (2a)\right]$	Degree
Transverse pitch	$p_{et} = \pi m_t \cos \alpha_t$	mm
Base diameter of the pinion	$d_{b1} = z_1 m_t \cos \alpha_t$	mm
Base diameter of the wheel	$d_{b2} = z_2 m_t \cos \alpha_t$	mm
Length of path of contact	$g_{\alpha} = \frac{1}{2} \left(\sqrt{d_{a1}^2 - d_{b1}^2} + \frac{u}{ u } \sqrt{d_{a2}^2 - d_{b2}^2} \right) - a \sin \alpha_{wt}$	mm
Transverse contact ratio	$\varepsilon_{\alpha} = g_{\alpha} / p_{et}$	_
Overlap ratio	$\epsilon_{\beta} = b \tan \beta_b / p_{et}$ $b = min (b_1, b_2)$	-

1.3.3 General factors

1.3.3.1 Application factor

With the application factor KA, all additional forces acting on the gears from external sources are taken into consideration. It is dependent on the characteristics of the driving and driven machines, as well as the couplings, the masses and stiffness of the system, and the operating conditions.

The application factor is determined by the service classification of the individual gear. If possible, the factor KA should be determined by means of a careful measurement or a comprehensive analysis of the system. Since very often it is not possible to carry out the one or other method without great expenditure, reference values are given in table 6 which equally apply to all gears in a gear unit.

Table 6 Application factor K _A								
	Working mode of the driven machine							
of prime mover	Uniform	Moderate shock loads	Average shock loads	Heavy shock loads				
Uniform	1.00	1.25	1.50	1.75				
Moderate shock loads	1.10	1.35	1.60	1.85				
Average shock loads	1.25	1.50	1.75	2.00 or higher				
Heavy shock loads	1.50	1.75	2.00	2.25 or higher				

1.3.3.2 Dynamic factor

With the dynamic factor K_{V} , additional dynamic forces caused in the meshing itself are taken into consideration. Taking z_1 , v and u from tables 4 and 5. it is calculated from

$$K_v = 1 + 0.0003 z_1 v \sqrt{\frac{u^2}{1 + u^2}}$$
 (4)

1.3.3.3 Face load factor

The face load factor $K_{H\beta}$ takes into account the increase in the load on the tooth flanks caused by non-uniform load distribution over the facewidth. According to /8/, it can be determined by means of different methods. Exact methods based on comprehensive measurements or calculations or on a combination of both are very expensive. Simple methods, however, are not exact, as a consequence of which estimations made to be on the safe side mostly result in higher factors. For normal cylindrical gear teeth without longitudinal correction, the face load factor can be calculated according to method D in accordance with /8/ dependent on facewidth b and reference diameter d₁ of the pinion, as follows:

 $K_{H\beta} = 1.15 + 0.18 (b/d_1)^2 + 0.0003 b$ (5)

with $b = min (b_1, b_2)$. As a rule, the gear unit manufacturer carries out an analysis of the load distribution over the facewidth in accordance with an exact calculation method /13/. If required, he makes longitudinal corrections in order to attain uniform load carrying over the facewidth. see subsection 1.2.5. Under such conditions, the face load factor lies within the range of $K_{H\beta} = 1.1$... 1.25. As a rough rule applies: A sensibly

selected crowning symmetrical in length reduces the amount of $K_{H\beta}$ lying above 1.0 by approx. 40 to 50%, and a directly made longitudinal correction by approx. 60 to 70%.

In the case of slim shafts with gears arranged on one side, or in the case of lateral forces or moments acting on the shafts from external sources, for the face load factors for gears without longitudinal correction the values may lie between 1.5 and 2.0 and in extreme cases even at 2.5.

Face load factor $K_{F\beta}$ for the determination of increased tooth root stress can approximately be deduced from face load factor K_{HB} according to the relation

1.3.3.4 Transverse load factors

The transverse load factors $K_{H\alpha}$ and $K_{F\alpha}$ take into account the effect of the non-uniform distribution of load between several pairs of simultaneously contacting gear teeth. Under the conditions as laid down in subsection 1.3.1, the result for surface stress and for tooth root stress according to method B in accordance with /8/ is

> $K_{H\alpha} = K_{F\alpha} = 1.0$ (7)

1.3.4 Tooth flank load carrying capacity

The calculation of surface durability against pitting is based on the Hertzian pressure at the pitch circle. For pinion and wheel the same effective Hertzian pressure σ_H is assumed. It must not exceed the permissible Hertzian pressure σ_{Hp} , i.e.

1.3.4.1 Effective Hertzian pressure

The effective Hertzian pressure is dependent on the load, and for pinion and wheel is equally derived from the equation

(8)

 $\sigma_{H} + \sigma_{Hp}$.

$$\sigma_{H} = Z_{E} Z_{H} Z_{\beta} Z_{\epsilon} \sqrt{K_{A} K_{v} K_{H\alpha} K_{H\beta} \frac{u+1}{u} \frac{F_{t}}{d_{1} b}}$$

(9)

Effective Hertzian pressure in N/mm² σн

Further:

- is the smallest facewidth b₁ or b₂ of pinion b or wheel acc. to table 4
- F_t , u, d₁ acc. to table 5
- K_A Application factor acc. to table 6
- K_V Dynamic factor acc. to equation (4)
- $K_{H\beta}$ Face load factor acc. to equ. (5)
- $K_{H\alpha}$ Transverse load factor acc. to equ. (7)
- Z_E Elasticity factor; $Z_E = 190 \sqrt{N/mm^2}$ for gears out of steel
- Zone factor acc. to figure 17 Zн
- Helix angle factor acc. to equ. (9) Zβ
- Ζε Contact ratio factor acc. to equ. (10) or (11)

With ß according to table 4 applies:

$$Z_{\beta} = \sqrt{\cos\beta}$$

With ε_{α} and ε_{β} according to table 5 applies:

$$Z_{\epsilon} = \sqrt{\frac{4 - \epsilon_{\alpha}}{3} \left(1 - \epsilon_{\alpha}\right) + \frac{\epsilon_{\beta}}{\epsilon_{\alpha}}} \quad \text{for } \epsilon_{\beta} < 1 \quad (10)$$

$$Z_{\varepsilon} = \sqrt{\frac{1}{\varepsilon_{\alpha}}} \quad \text{for } \varepsilon_{\beta} = 1$$
 (11)

1.3.4.2 Permissible Hertzian pressure

The permissible Hertzian pressure is determined by

$$\sigma_{HP} = Z_L Z_V Z_X Z_R Z_W \frac{\sigma_{Hlim}}{S_H}$$
 (12)

 σ_{HP} permissible Hertzian pressure in N/mm². It is of different size for pinion and wheel if the strengths of materials σ_{Hlim} are different. Factors

well as on the numbers of teeth z_1 , z_2 , and addendum modification coefficients x_1 , x_2 ; see table 4.

 Z_L , Z_v , Z_R , Z_W and Z_X are the same for pinion and wheel and are determined in the following.

The lubricant factor is computed from the lubricating oil viscosity V40 according to table 4 using the following formula:

$$Z_{\rm L} = 0.91 + \frac{0.25}{\left(1 + \frac{112}{V_{40}}\right)^2}$$
(13)

For the speed factor, the following applies using the circumferential speed v according to table 5:

$$Z_{\rm v} = 0.93 + \frac{0.157}{\sqrt{1 + \frac{40}{\rm v}}} \tag{14}$$

The roughness factor can be determined as a function of the mean peak-to-valley height $R_Z = (R_{Z1} + R_{Z2})/2$ of the gear pair as well as the gear ratio u and the reference diameter d₁ of the pinion, see tables 4 and 5, from

$$Z_{R} = \left[\frac{0.513}{R_{z}} \sqrt[3]{(1 + |u|) d_{1}}\right]^{0.08} (15)$$

For a gear pair with the same tooth flank hardness on pinion and wheel, the work hardening factor is

The size factor is computed from module m_n according to table 4 using the following formula:

$$Z_X = 1.05 - 0.005 m_n$$
 (17)

with the restriction $0.9 \leq Z_X \leq 1$.

- σ_{Hlim} Endurance strength of the gear material. For gears made out of case hardening steel, case hardened, figure 18 shows a range from 1300 ... 1650 N/mm² depending on the surface hardness of the tooth flanks and the quality of the material. Under the conditions as described in subsection 1.3.1, material quality MQ may be selected for pinion and wheel, see table on page 97.
- S_H required safety factor against pitting, see subsection 1.3.6.

1.3.5 Tooth strength

The maximum load in the root fillet at the 30-degree tangent is the basis for rating the tooth strength. For pinion and wheel it shall be shown separately that the effective tooth root stress σ_F does not exceed the permissible tooth root stress σ_{FP} , i.e. $\sigma_F < \sigma_{FP}$.

Figure 18

Allowable stress number for contact stress σ_{Hlim} of alloyed case hardening steels, case hardened, depending on the surface hardness HV1 of the tooth flanks and the material quality.

ML modest demands on the material quality MQ normal demands on the material quality ME high demands on the material quality, see /11/

1.3.5.1 Effective tooth root stress

As a rule, the load-dependent tooth root stresses for pinion and wheel are different. They are calculated from the following equation:

$$\sigma_{\rm F} = Y_{\epsilon} Y_{\beta} Y_{\rm FS} K_{\rm A} K_{\rm V} K_{\rm F\alpha} K_{\rm F\beta} \frac{F_{\rm t}}{b m_{\rm n}} \quad (18)$$

 $\sigma_{\text{F}}\,$ Effective tooth root stress in N/mm^2

The following factors are of equal size for pinion and wheel:

- m_n , F_t acc. to tables 4 and 5
- K_A Application factor acc. to table 6
- K_V Dynamic factor acc. to equation (4)
- $K_{F\beta}$ Face load factor acc. to equation (6)
- $K_{F\alpha}$ Transverse load factor acc. to equ. (7)
- Y_{ϵ} Contact ratio factor acc. to equ. (19)
- Y_{β} Helix angle factor acc. to equ. (20)

The following factors are of different size for pinion and wheel:

b₁, b₂ Facewidths of pinion and wheel acc. to table 4. If the facewidths of pinion and wheel are different, it may be assumed that the load bearing width of the wider facewidth is equal to the smaller facewidth plus such extension of the wider that does not exceed one times the module at each end of the teeth.

Cylindrical Gear Units Load Carrying Capacity of Involute Gears

Figure 19

Tip factor Y_{FS} for external gears with standard basic rack tooth profile acc. to DIN 867 depending on the number of teeth z (or z_n in case of helical gears) and addendum modification coefficient x, see tables 4 and 5. The following only approximately applies to internal gears: $Y_{FS} = Y_{FS\infty}$ (\approx value for x = 1.0 and z = 300).

Y_{FS1}, Y_{FS2} Tip factors acc. to figure 19. They account for the complex stress condition inclusive of the notch effect in the root fillet.

With the helix angle β acc. to table 4 and the overlap ratio ϵ_{β} acc. to table 5 follows:

$$Y\varepsilon = 0.25 + \frac{0.75}{\varepsilon_{\alpha}} \cos^2\beta \qquad (19)$$

with the restriction 0.625 +
$$Y_{\epsilon}$$
 + 1

$$Y_{\beta} = 1 - \frac{\varepsilon_{\beta}\beta}{120}$$
 (20)

with the restriction

$$Y_{\beta} = \max [(1 - 0.25 \epsilon_{\beta}); (1 - \beta/120)]$$

1.3.5.2 Permissible tooth root stress

The permissible tooth root stress for pinion and wheel is determined by

$$\sigma_{\text{FP}} = Y_{\text{ST}} Y_{\text{\delta relT}} Y_{\text{RrelT}} Y_{\text{X}} \frac{\sigma_{\text{Flim}}}{(\text{S}_{\text{F}})}$$
(21)

 σ_{FP} permissible tooth root stress in N/mm². It is not equal for pinion and wheel if the material strengths σ_{Flim} are not equal. Factors $Y_{ST}, Y_{\delta relT}, Y_{RrelT}$ and Y_X may be approximately equal for pinion and wheel.

- $\begin{array}{ll} Y_{ST} & \text{is the stress correction factor of the refer-}\\ & \text{ence test gears for the determination of}\\ & \text{the bending stress number } \sigma_{Flim}. \ \ \text{For}\\ & \text{standard reference test gears, } Y_{ST} = 2.0\\ & \text{has been fixed in the standard.} \end{array}$
- $Y_{\delta relT}$ is the notch relative sensitivity factor (notch sensitivity of the material) referring to the standard reference test gear. By approximation $Y_{\delta relT} = 1.0$.

For the relative surface factor (surface roughness factor of the tooth root fillet) referring to the standard reference test gear the following applies by approximation, depending on module m_n :

and for the size factor

with the restriction 0.8 + Y_X + 1.

 $\sigma_{Flim} \quad \begin{array}{l} \mbox{Bending stress number of the gear material. For gears out of case hardening steel, case hardened, a range from 310 ... 520 N/mm^2 is shown in figure 20 depending on the surface hardness of the tooth N_{10} to the tooth N_{10} to the surface hardness of N_{10} to the surface hardness$

flanks and the material quality. Under the conditions according to subsection 1.3.1, a strength pertaining to quality MQ may be used as a basis for pinion and wheel see table on page 97.

S_F Safety factor required against tooth breakage, see subsection 1.3.6.

Figure 20

Bending stress number σ_{Flim} of alloyed case hardening steel, case hardened, depending on the surface hardness HV1 of the tooth flanks and the material quality.

ML modest demands on the material quality MQ normal demands on the material quality ME high demands on the material quality, see /11/

1.3.6 Safety factors

The minimum required safety factors according to DIN are:

against pitting $S_H = 1.0$ against tooth breakage $S_F = 1.3$.

In practice, higher safety factors are usual. For multistage gear units, the safety factors are determined about 10 to 20% higher for the expensive final stages, and in most cases even higher for the cheaper preliminary stages.

Also for risky applications a higher safety factor is given.

1.3.7 Calculation example

An electric motor drives a coal mill via a multistage cylindrical gear unit. The low speed gear stage is to be calculated.

Given: Nominal power rating P = 3300 kW; pinion speed $n_1 = 141$ 1/min.; centre distance a = 815 mm; normal module $m_n = 22$ mm; tip diameter $d_{a1} = 615.5$ mm and $d_{a2} = 1100$ mm; pinion and wheel widths $b_1 = 360$ mm and $b_2 = 350$ mm; numbers of teeth $z_1 = 25$ and $z_2 = 47$; addendum modification coefficients $x_1 = 0.310$ and $x_2 = 0.203$; normal pressure angle $\alpha_n = 20$ degree; helix angle β = 10 degree; kinematic viscosity of the lubricating oil V₄₀ = 320 cSt; mean peak-tovalley roughness R_{z1} = R_{z2} = 4.8 µm. The cylindrical gears are made out of the material 17 CrNiMo 6. They are case hardened and ground with profile corrections and width-symmetrical crowning.

Calculation (values partly rounded):

Gear ratio u = 1.88; reference diameter of the pinion d₁ = 558.485 mm; nominal circumferential force on the reference circle F_t = 800,425 N; circumferential speed on the reference circle v = 4.123 m/s; base helix angle β_b = 9.391 degree; virtual numbers of teeth z_{n1} = 26.08 and z_{n2} = 49.03; transverse module m_t = 22.339 mm; transverse pressure angle α_t = 20.284 degree; working transverse pressure angle α_{wt} = 22.244 degree; normal transverse pitch p_{et} = 65.829; base diameters d_{b1} = 523.852 mm and d_{b2} = 98.041 mm; transverse contact ratio ϵ_{α} = 1.489; overlap ratio ϵ_{β} = 0.879.

Application factor $K_A = 1.50$ (electric motor with uniform mode of operation, coal mill with medium shock load); dynamic factor $K_V = 1.027$; face load factor $K_{H\beta} = 1.20$ [acc. to equation (5) follows $K_{H\beta}$ = 1.326, however, because of symmetrical crowning the calculation may be made with a smaller value]; $K_{F\beta} = 1.178$; $K_{H\alpha} = K_{F\alpha} = 1.0$.

Load carrying capacity of the tooth flanks:

Elasticity factor $Z_E = 190$ N mm²; zone factor $Z_H = 2.342$; helix angle factor $Z_\beta = 0.992$; contact ratio factor $Z_\epsilon = 0.832$. According to equation (8), the Hertzian pressure for pinion and wheel is $\sigma_H = 1251 \text{ N/mm}^2$.

Lubricant factor $Z_L = 1.047$; speed factor $Z_V = 0.978$; roughness factor $Z_R = 1.018$; work hardening factor $Z_W = 1.0$; size factor $Z_X = 0.94$. With the allowable stress number for contact stress (pitting) $\sigma_{Him} = 1500 \text{ N/mm}^2$, first the permissible Hertzian pressure $\sigma_{HP} = 1470 \text{ N/mm}^2$ is determined from equation (12) without taking into account the safety factor.

The safety factor against pitting is found by $S_H = \sigma_{HP}/\sigma_H = 1470/1251 = 1.18$. The safety factor referring to the torgue is $S_H^2 = 1.38$.

Load carrying capacity of the tooth root:

Contact ratio factor $Y_{\epsilon} = 0.738$; helix angle factor $Y_{\beta} = 0.927$; tip factors $Y_{FS1} = 4.28$ and $Y_{FS2} = 4.18$ (for $h_{a0} = 1.4 m_n$; $\phi_{a0} = 0.3 m_n$; $\alpha_{pro} = 10$ degree; $p_{rO} = 0.0205 m_n$). The effective tooth root stresses $\sigma_{F1} = 537$ N/mm² for the pinion and $\sigma_{F2} = 540$ N/mm² for the wheel can be obtained from equation (18).

Stress correction factor $Y_{ST} = 2.0$; relative sensitivity factor $Y_{\delta relT} = 1.0$; relative surface factor $Y_{RelT} = 0.96$; size factor $Y_X = 0.83$. Without taking

into consideration the safety factor, the permissible tooth root stresses for pinion and wheel $\sigma_{FP1} = \sigma_{FP2} = 797 \text{ N/mm}^2$ can be obtained from equation (21) with the bending stress number $\sigma_{Flim} = 500 \text{ N/mm}^2$.

The safety factors against tooth breakage referring to the torque are $S_F = \sigma_{FP}/\sigma_F$: for the pinion $S_{F1} = 797/537 = 1.48$ and for the wheel $S_{F2} = 797/540 = 1.48$.

1.4 Gear unit types

1.4.1 Standard designs

In the industrial practice, different types of gear units are used. Preferably, standard helical and bevel-helical gear units with fixed transmission ratio and size gradation are applied. These single-stage to four-stage gear units according to the modular construction system cover a wide range of speeds and torques required by the driven machines. Combined with a standard electric motor such gear units are, as a rule, the most economical drive solution.

But there are also cases where no standard drives are used. Among others, this is true for high torques above the range of standard gear units. In such cases, special design gear units are used, load sharing gear units playing an important role there.

1.4.2 Load sharing gear units

In principle, the highest output torques of gear units are limited by the manufacturing facilities, since gear cutting machines can make gears up to a maximum diameter only. Then, the output torque can be increased further only by means of load sharing in the gear unit. Load sharing gear units are, however, also widely used for lower torques as they provide certain advantages in spite of the larger number of internal components, among others they are also used in standard design. Some typical features of the one or other type are described in the following.

1.4.3 Comparisons

In the following, single-stage and two-stage gear units up to a ratio of i = 16 are examined. For common gear units the last or the last and the last but one gear stage usually come to approx. 70 to 80% of the total weight and also of the manufacturing expenditure. Adding further gear stages in order to achieve higher transmission ratios thus does not change anything about the following fundamental description.

In figure 21, gear units without and with load sharing are shown, shaft 1 each being the HSS and shaft 2 being the LSS. With speeds n_1 and n_2 , the transmission ratio can be obtained from the formula

 $i = n_1 / n_2$

(23)

The diameter ratios of the gears shown in figure 21 correspond to the transmission ratio i = 7. The gear units have the same output torques, so that in figure 21 a size comparison to scale is illustrated. Gear units A, B, and C are with offset shaft arrangement, and gear units D, E, F, and G with coaxial shaft arrangement.

Diagrammatic view of cylindrical gear unit types without and with load sharing. Transmission ratio i = 7. Size comparison to scale of gear units with the same output torque.

Gear unit A has one stage, gear unit B has two stages. Both gear units are without load sharing. Gear units C, D, E, F, and G have two stages and are load sharing. The idler gears in gear units C and D have different diameters. In gear units E, F, and G the idler gears of one shaft have been joined to one gear so that they are also considered to be single-stage gear units.

Gear unit C has double load sharing. Uniform load distribution is achieved in the high-speed gear stage by double helical teeth and the axial movability of shaft 1. In gear unit D the load of the high-speed gear stage is equally shared between three intermediate gears which is achieved by the radial movability of the sun gear on shaft 1. In the low-speed gear stage the load is shared six times altogether by means of the double helical teeth and the axial movability of the intermediate shaft.

In order to achieve equal load distribution between the three intermediate gears of gear units E, F, and G the sun gear on shaft 1 mostly is radially movable. The large internal gear is an annulus gear which in the case of gear unit E is connected with shaft 2, and in the case of gear units F and G with the housing. In gear units F and G, web and shaft 2 form an integrated whole. The idler gears rotate as planets around the central axle. In gear unit G, double helical teeth and axial movability of the idler gears guarantee equal load distribution between six branches.

1.4.3.1 Load value

By means of load value $\mathsf{B}_\mathsf{L},$ it is possible to compare cylindrical gear units with different ultimate stress values of the gear materials with each other in the following examinations.

According to /14/, the load value is the tooth peripheral force F_u referred to the pinion pitch diameter d_w and the carrying facewidth b, i.e.

$$B_{L} = \frac{F_{u}}{b d_{w}}$$
(25)

The permissible load values of the meshings of the cylindrical gear units can be computed from the pitting resistance by approximation, as shown in /15/ (see section 1.3.4), using the following formula:

$$B_L \approx 7 \cdot 10^{-6} \quad \frac{u}{u+1} \quad \frac{\sigma^2_{Hlim}}{K_A S_H^2} \qquad (26)$$

with B_{L} in N/mm² and allowable stress number for contact stress (pitting) σ_{Hlim} in N/mm² as well as gear ratio u, application factor K_A and factor of safety from pitting S_H. The value of the gear ratio u is always greater than 1, and is negative for internal gear pairs (see table 3).

Load value B_L is a specific quantity and independent of the size of the cylindrical gear unit. The following applies for practically executed gear units: cylindrical gears out of case hardening steel $B_L = 4...6$ N/mm²; cylindrical gears out of quenched and tempered steel $B_L = 1...1.5$ N/mm²; planetary gear stages with annulus gears out of quenched and tempered steel, planet gears and sun gears out of case hardening steel $B_L = 2.0...3.5$ N/mm².

1.4.3.2 Referred torques

In figure 22, referred torques for the gear units shown in figure 21 are represented, dependent on the transmission ratio i. Further explanations are given in table 7. The torque T_2 is referred to the construction dimension D when comparing the sizes, to the weight of the gear unit G when comparing the weights, and to the generated

surface A of the pitch circle cylinders when comparing the gear teeth surfaces. Gear unit weight G and gear teeth surface A (= generated surface) are one measure for the manufacturing cost. The higher a curve, in figure 22, the better the respective gear unit in comparison with the others.

Table 7 Referred Torqu	les		
Comparison criteria	Definition	Dimension	Units of the basic details
Size	$\delta = \frac{T_2}{D^3 B_L}$	 mm	T ₂ in mm Buin N/mm ²
Weight	$\gamma = \frac{T_2}{G B_L}$	m mm ² kg	D in mm
Gear teeth surface	$\alpha = \frac{T_2}{A^{3/2} B_{L}}$	m ²	G in kg A in m ²

128

For all gear units explained in figures 21 and 22, the same prerequisites are valid. For all gear units, the construction dimension D is larger than the sum of the pitch diameters by the factor 1.15. Similar definitions are valid for gear unit height and width. Also the wall thickness of the housing is in a fixed relation to the construction dimension D /15/.

With a given torque T_2 and with a load value B_L computed according to equation (26), the construction dimension D, the gear unit weight G, and the gear teeth surface A can be determined by approximation by figure 22 for a given transmission ratio i. However, the weights of modular-type gear units are usually higher, since the housing dimensions are determined according to different points of view.

Referred to size and weight, planetary gear units F and G have the highest torques at small ratios i. For ratios i < 4, the planetary gear becomes the pinion instead of the sun gear. Space requirement and load carrying capacity of the planetary gear bearings decrease considerably. Usually, the planetary gear bearings are arranged in the planet carrier for ratio i < 4.5.

Gear units C and D, which have only external gears, have the highest torque referred to size and weight for ratios above $i \approx 7$. For planetary gear units, the torque referred to the gear teeth surface is more favourable only in case of small ratios, if compared with other gear units. It is to be taken into consideration, however, that internal gears require higher manufacturing expenditure than external gears for the same quality of manufacture.

The comparisons show that there is no optimal gear unit available which combines all advantages over the entire transmission ratio range. Thus, the output torque referred to size and weight is the most favourable for the planetary gear unit, and this all the more, the smaller the transmission ratio in the planetary gear stage. With increasing ratio, however, the referred torque decreases considerably. For ratios above i = 8, load sharing gear units having external gears only are more favourable because with increasing ratio the referred torque decreases only slightly.

With regard to the gear teeth surface, planetary gear units do not have such big advantages if compared to load sharing gear units having external gears only.

1.4.3.3 Efficiencies

When comparing the efficiency, figure 22d, only the power losses in the meshings are taken into consideration. Under full load, they come to approx. 85% of the total power loss for common cylindrical gear units with rolling bearings. The efficiency as a quantity of energy losses results

from the following relation with the input power at shaft 1 and the torques T_1 and T_2

All gear units shown in figure 21 are based on the same coefficient of friction of tooth profile $\mu z = 0.06$. Furthermore, gears without addendum modification and numbers of teeth of the pinion z = 17 are uniformly assumed for all gear units /15/, so that a comparison is possible. The single stage gear unit A has the best

efficiency. The efficiencies of the two stage gear units B, C, D, E, F, and G are lower because the power flow passes two meshings. The internal gear pairs in gear units E, F, and G show better efficiencies owing to lower sliding velocities in the meshings compared to gear units B, C, and D which only have external gear pairs.

The lossfree coupling performance of planetary gear units F and G results in a further improvement of the efficiency. It is therefore higher than that of other comparable load sharing gear units. For higher transmission ratios, however, more planetary gear stages are to be arranged in series so that the advantage of a better efficiency compared to gear units B, C, and D is lost.

1.4.3.4 Example

Given: Two planetary gear stages of type F arranged in series, total transmission ratio i = 20, output torque T₂ = $3 \cdot 10^6$ Nm, load value B_L = 2.3 N/mm². A minimum of weight is approximately achieved by a transmission ratio division of i = $5 \cdot 4$ of the HS and LS stage. At γ_1 = 30 m mm²/kg and γ_2 = 45 m mm²/kg according to figure 22b, the weight for the HS stage is approximately 10.9 t and for the LS stage approximately 30 t, which is a total 40.9 t. The total efficiency according to figure 22d is η = 0.986 \cdot 0.985 = 0.971.

In comparison to a gear unit of type D with the same transmission ratio i = 20 and the same output torque $T_2 = 3 \cdot 10^6$ Nm, however, with a better load value $B_L = 4$ N/mm² this gear unit has a weight of 68.2 t according to figure 22 with $\gamma = 11$ m mm²/kg and is thus heavier by 67%. The advantage is a better efficiency of $\eta = 0.98$. The two planetary gear stages of type F together have a power loss which is by 45% higher than that of the gear unit of type D. In addition, there is not enough space for the rolling bearings of the planet gears in the stage with i = 4.

1.5 Noise emitted by gear units

1.5.1 Definitions

Noise emitted by a gear unit - like all other noises - is composed of tones having different frequencies f.

Measure of intensity is the sound pressure p which is the difference between the highest (or lowest) and the mean pressure in a sound wave detected by the human ear.

The sound pressure can be determined for a single frequency or - as a combination - for a frequency range (single-number rating). It is dependent on the distance to the source of sound.

In general, no absolute values are used but amplification or level quantities in bel (B) or decibel (dB). Reference value is, for instance, the sound pressure at a threshold of audibility $p_0 = 2 \cdot 10^{-5} N/m^2$.

In order to take into consideration the different sensitivities of the human ear at different frequencies, the physical sound pressure value at the different frequencies is corrected according to rating curve A, see figure 23.

Apart from sound pressures at certain places, sound powers and sound intensities of a whole system can be determined.

From the gear unit power a very small part is turned into sound power. This mainly occurs in

the meshings, but also on bearings, fan blades, or by oil movements. The sound power is transmitted from the sources to the outside gear unit surfaces mainly by structure-borne noise (material vibrations). From the outside surfaces, air borne noise is emitted.

The sound power L_{WA} is the A-weighted sound power emitted from the source of sound and thus a quantity independent of the distance. The sound power can be converted to an average sound pressure for a certain place. The sound pressure decreases with increasing distance from the source of sound.

The sound intensity is the flux of sound power through a unit area normal to the direction of propagation. For a point source of sound it results from the sound power L_W divided by the spherical enveloping surface 4 πr^2 , concentrically enveloping the source of sound. Like the sound pressure, the sound intensity is dependent on the distance to the source of sound, however, unlike the sound pressure it is a directional quantity.

The recording instrument stores the sound pressure or sound intensity over a certain period of time and writes the dB values in frequency ranges (bands) into the spectrum (system of coordinates).

Very small frequency ranges, e.g. 10 Hz or 1/12 octaves are termed narrow bands, see figure 24.

Histograms occur in the one-third octave spectrum and in the octave spectrum, see figures 25 and 26. In the one-third octave spectrum (spectrum with 1/3

octaves), the bandwidth results from

$$f_0 / f_u = \sqrt[3]{2}$$
, i.e. $f_0 / f_u = 1.26$,
 $f_0 = f_m \cdot 1.12$ and $f_u = f_m / 1.12$;

 f_m = mean band frequency, f_o = upper band frequency, f_u = lower band frequency. In case of octaves, the upper frequency is as twice as big as the lower one, or $f_o = f_m \cdot 1.41$ and $f_u = f_m / 1.41$.

The total level (resulting from logarithmic addition of individual levels of the recorded frequency range) is a single-number rating. The total level is the common logical value for gear unit noises. The pressure level is valid for a certain distance, in general 1 m from the housing surface as an ideal parallelepiped.

1.5.2 Measurements

The main noise emission parameter is the sound power level.

1.5.2.1 Determination via sound pressure

DIN 45635 Part 1 and Part 23 describe how to determine the sound power levels of a given gear unit /16/. For this purpose, sound pressure levels L_{pA} are measured at fixed points surrounding the gear unit and converted to sound power levels L_{WA} . The measurement surface ratio L_S is an auxiliary quantity which is dependent on the sum of the measurement surfaces. When the gear unit is placed on a reverberant base, the bottom is not taken into consideration, see example in figure 27.

Example of arrangement of measuring points according to DIN 45 635 /16/

In order to really detect the noise radiated by the gear unit alone, corrections for background noise and environmental influences are to be made. It is not easy to find the correct correction values, because in general, other noise radiating machines are in operation in the vicinity.

1.5.2.2 Determination via sound intensity

The gear unit surface is scanned manually all around at a distance of, for instance, 10 cm, by means of a special measuring device containing two opposing microphones. The mean of the levels is taken via the specified time, e.g. two minutes. An analyzer computes the intensity or power levels in one-third octave or octave bands. The results can be seen on a display screen. In most cases, they can also be recorded or printed, see figures 25 and 26. The results correspond to the sound power levels as determined in accordance with DIN 45635. This procedure requires a larger number of devices to be used, however, it is a very quick one. Above all, foreign influences are eliminated in the simplest way.

1.5.3 Prediction

It is not possible to exactly calculate in advance the sound power level of a gear unit to be made. However, one can base the calculations on experience. In the VDI guidelines 2159 /17/, for example, reference values are given. Gear unit manufacturers, too, mostly have own records.

The VDI guidelines are based on measurements carried out on a large number of industrial gear units. Main influence parameters for gear unit noises are gear unit type, transmitted power, manufacturing quality and speed. In VDI 2159, a distinction is made between cylindrical gear units with rolling bearings, see figure 28, cylindrical gear units with sliding bearings (high-speed gear units), bevel gear and bevel-helical gear units, planetary gear units and worm gear units. Furthermore, information on speed variators can be found in the guidelines.

Figure 28 exemplary illustrates a characteristic diagram of emissions for cylindrical gear units. Similar characteristic diagrams are also available for the other gear unit types mentioned. Within the characteristic diagrams, 50%- and 80%-lines are drawn. The 80%-line means, for example, that 80% of the recorded industrial gear units radiate lower noises.

The lines are determined by mathematical equations. For the 80%-lines, the equations according to VDI 2159 are:

Gear units	Total sound power level L_{WA}
Cylindrical gear units (rolling bearings)	77.1 + 12.3 · log P / kW (dB)
Cylindrical gear units (sliding bearings)	85.6 + 6.4 · log P / kW (dB)
Bevel gear and bevel-helical gear units	71.7 + 15.9 · log P / kW (dB)
Planetary gear units	87.7 + 4.4 · log P / kW (dB)
Worm gear units	65.0 + 15.9 · log P / kW (dB)

For restrictions, see VDI 2159.

Cylindrical Gear Units Noise Emitted by Gear Units

Table of Contents Section 11

The measurement surface sound pressure level
L _{DA} at a distance of 1 m is calculated from the to-
tal sound power level

(28)

(29)

- $L_s = 10 \cdot \log S (dB)$
- S = Sum of the hypothetical surfaces (m²) enveloping the gear unit at a distance of 1 m (ideal parallelepiped)

Example of information for P = 100 kW in a 2-stage cylindrical gear unit of size 200 (centre distance in the 2nd gear stage in mm), with rolling bearings, of standard quality:

"The sound power level, determined in accordance with DIN 45635 (sound pressure measurement) or according to the sound intensity measurement method, is 102 + 2 dB (A). Room and connection influences have not been taken into consideration. If it is agreed that measurements are to be made they will be carried out on the manufacturer's test stand."

Note:

For this example, a measurement surface sound pressure level of 102 - 13.2 \approx 89 db (A), tolerance + 2 dB, is calculated at a distance of 1 m with a measurement surface S = 21 m² and a measurement surface ratio L_S = 13.2 dB.

Individual levels in a frequency spectrum cannot safely be predicted for gear units because of the multitude of influence parameters.

1.5.4 Possibilities of influencing

cooling are also important.

With the selection of other than standard geometries and with special tooth modifications (see section 1.2.5), gear unit noises can be positively influenced. In some cases, such a procedure results in a reduction in the performance (e.g. module reduction) for the same size, in any case, however, in special design and manufacturing expenditure. Housing design, distribution of masses, type of rolling bearing, lubrication and

Sometimes, the only way is to enclose the gear units which makes possible that the total level is reduced by 10 to 25 dB, dependent on the conditions.

Attention has to be paid to it, that no structureborne noise is radiated via coupled elements (couplings, connections) to other places from where then airborne noise will be emitted.

A sound screen does not only hinder the propagation of airborne noise but also the heat dissipation of a gear unit, and it requires more space.

Shaft Couplings	Page
General Fundamental Principles	136
Rigid Couplings	136
Torsionally Flexible Couplings	136-138
Torsionally Rigid Couplings	138
Positive Clutches	138
Friction Clutches	138
Synoptical Table of Torsionally Flexible and Torsionally Rigid Couplings	139
Positive Clutches and Friction Clutches	140

Shaft Couplings

General Fundamental Principles Rigid and Torsionally Flexible Couplings

2. Shaft couplings

2.1 General fundamental principles

In mechanical equipment, drives are consisting of components like prime mover, gear unit, shafts and driven machine. Such components are connected by couplings which have the following tasks:

- Transmitting an as slip-free as possible motion of rotation, and torques;
- Compensating shaft misalignments (radial, axial, angular);
- Reducing the torsional vibration load, influencing and displacing the resonant ranges;

- Damping torque and speed impulses;
- Interrupting the motion of rotation (clutches);
- Limiting the torque;
- Sound isolation;
- Electrical insulation.

The diversity of possible coupling variants is shown in the overview in figure 29. A distinction is made between the two main groups couplings and clutches, and the subgroups rigid/flexible couplings and positive/friction clutches.

(*) In case of additional gearing, all clutches are disengageable when stationary.

Figure 29 Overview of possible shaft coupling designs

2.2 Rigid couplings

Rigid couplings connect two shaft ends and do practically not allow any shaft misalignment. They are designed as clamp, flange and radial tooth couplings and allow the transmission of high torques requiring only small space. The coupling halves are connected by means of bolts (close fitting bolts). In case of clamp and flange couplings (with split spacer ring), radial disassembly is possible. Radial tooth couplings are self-centering and transmit both high and alternating torques.

2.3 Torsionally flexible couplings

Torsionally flexible couplings are offered in many designs. Main functions are the reduction of torque impulses by elastic reaction, damping of torsional vibrations by internal damping in case of couplings with flexible rubber elements, and frictional damping in case of couplings with flexible metal elements, transfer of resonance frequencies by variation of the torsional stiffness, and compensation of shaft misalignments with low restoring forces. The flexible properties of the couplings are generated by means of metal springs (coil springs, leaf springs) or by means of elastomers (rubber, plastics). For couplings incorporating flexible metal elements, the torsional flexibility is between 2 and 25 degree, depending on the type. The stiffness characteristics, as a rule, show a linear behaviour, unless a progressive characteristic has intentionally been aimed for by design measures. Damping is achieved by means of friction and viscous damping means.

In case of couplings incorporating elastomer elements, a distinction is made between couplings of average flexibility with torsion angles of 2 up to 5 degree and couplings of high flexibility with torsion angles of 5 up to 30 degree. Depending on the type, the flexible elements of the coupling are subjected to compression (tension), bending and shearing, or to a combined form of stressing. In some couplings (e.g. tyre couplings), the flexible elements are reinforced by fabric or thread inserts. Such inserts absorb the coupling forces and prevent the elastic-viscous flow of the elastomer.

Couplings with elastomer elements primarily subjected to compression and bending have non-linear progressive stiffness characteristics, while flexible elements (without fabric insert) merely subjected to shearing generate linear stiffness characteristics. The quasi-statical torsional stiffness of an elastomer coupling increases at dynamic load (up to approximately 30 Hz, test frequency 10 Hz) by approximately 30 to 50%. The dynamic stiffness of a coupling is influenced [(+) increased; (-) reduced] by the average load (+), the oscillation amplitude (-), temperature (-), oscillation frequency (+), and period of use (-).

For rubber-flexible couplings, the achievable damping values are around $\psi = 0.8$ up to 2 (damping coefficient ψ ; DIN 740 /18/). Damping leads to heating of the coupling, and the heat loss has to be dissipated via the surface. The dynamic loading capacity of a coupling is determined by the damping power and the restricted operating temperature of elastomers of 80°C up to max. 100°C.

When designing drives with torsionally flexible couplings according to DIN 740 /18/, torsional vibrations are taken into account by reducing the drive to a two-mass vibration generating system, or by using torsional vibration simulation programs which can compute detailed vibration systems for both steady and unsteady conditions. Examples of couplings incorporating elastomer elements of average flexibility are claw-, pin-, and pin and bush couplings. The N-EUPEX coupling is a wear-resistant pin coupling for universal use (figure 30) absorbing large misalignments. The coupling is available as fail-safe coupling and as coupling without failsafe device. In its three-part design it is suitable for simple assembly and simple replacement of flexible elements. The coupling is made in different types and sizes for torques up to 62,000 Nm.

The BIPEX coupling is a flexible fail-safe claw coupling in compact design for high power capacity and is offered in different sizes for maximum torques up to 3,700 Nm. The coupling is especially suitable for plug-in assembly and fitting into bell housings.

The RUPEX coupling is a flexible fail-safe pin and bush coupling which as a universal coupling is made in different sizes for low up to very high torques (10⁶ Nm) (figure 31). The coupling is suitable for plug-in assembly and capable of absorbing large misalignments. The optimized shape of the barrelled buffers and the conical seat of the buffer bolts facilitate assembly and guarantee maintenance-free operation. Because of their capability to transmit high torques, large RUPEX couplings are often used on the output side between gear unit and driven machine. Since the coupling hubs are not only offered in grey cast iron but also in steel, the couplings are also suitable for high speeds.

Examples of highly flexible couplings incorporating elastomer elements are tyre couplings, flange couplings, ring couplings, and large-volume claw couplings with cellular elastic materials. Examples of flexible couplings incorporating metal elements are coil spring and leaf spring couplings.

The ELPEX coupling (figure 32) is a highly flexible ring coupling without torsional backlash which is suitable for high dynamic loads and has good damping properties. Rings of different elasticity are suitable for optimum dynamic tuning of drives. Torque transmitting thread inserts have been vulcanized into the rings out of high-quality natural rubber. Due to the symmetrical design the coupling is free from axial and radial forces and allows large shaft misalignments even under torque loads. Typical applications for ELPEX couplings which are available for torques up to 90,000 Nm are drives with periodically exciting aggregates (internal combustion engines, reciprocating engines) or extremely shockloaded drives with large shaft misalignments.

Another highly flexible tyre coupling with a simple closed tyre as flexible element mounted between two flanges is **the ELPEX-B coupling**. It is available in different sizes for torques up to 20,000 Nm.

Shaft Couplings Torsionally Flexible Couplings Torsionally Rigid Couplings Positive and Friction Clutches

This coupling features high flexibility without torsional backlash, absorbs large shaft misalignments, and permits easy assembly and disassembly (radial).

The ELPEX-S coupling (figure 33) is a highly flexible, fail-safe claw coupling absorbing large shaft misalignments. The large-volume cellular flexible elements show very good damping properties with low heating and thus allow high dynamic loads. The couplings have linear stiffness characteristics, and with the use of different flexible elements they are suitable for optimum dynamic tuning of drives. The couplings are of compact design and are suitable for torques up to 80,000 Nm. Plug-in assembly is possible. This universal coupling can be used in drives with high dynamic loads which require low frequency with good damping.

2.4 Torsionally rigid couplings

Torsionally rigid couplings are used where the torsional vibration behaviour should not be changed and exact angular rotation is required, but shaft misalignment has to be absorbed at the same time. With the use of long floating shafts large radial misalignments can be allowed. Torsionally rigid couplings are very compact, however, they have to be greased with oil or grease (exception: steel plate and membrane couplings). Typical torsionally rigid couplings are universal joint, gear, membrane and steel plate couplings, which always have to be designed as double-jointed couplings with floating shafts (spacers) of different lengths.

Universal joints allow large angular misalignments (up to 40 degree), the dynamic load increasing with the diffraction angle. In order to avoid pulsating angular rotation (2 times the torsional frequency), universal joints must always be arranged in pairs (same diffraction angle, forks on the intermediate shaft in one plane, input and output shaft in one plane). Constant velocity joints, however, always transmit uniformly and are very short.

Gear couplings of the ZAPEX type (figure 34) are double-jointed steel couplings with crowned gears which are capable of absorbing shaft misalignments (axial, radial and angular up to 1 degree) without generating large restoring forces. The ZAPEX coupling is of compact design, suitable for high speeds, and transmits very high torques (depending on the size up to > 10^6 Nm), and in addition offers large safety reserves for the absorption of shock loads. It is lubricated with oil or grease. Fields of application are, among others, rolling mills, cement mills, conveyor drives, turbines.

The ARPEX coupling (figure 35) is a doublejointed, torsionally rigid plate coupling for the absorption of shaft misalignments (angular up to 1 degree). The coupling is maintenance-free (no lubrication) and wear-resistant and owing to its closed plate packs allows easy assembly. A wide range of ARPEX couplings is available - from the miniature coupling up to large-size couplings for torques up to > 10^6 Nm. The coupling transmits torques very uniformly, and owing to its all-steel design is suitable for high ambient temperatures (up to 280° C) and high speeds. Fields of application are, among others, paper machines, ventilators, pumps, drives for materials-handling equipment as well as for control systems.

2.5 Positive clutches

This type includes all clutches which can be actuated when stationary or during synchronous operation in order to engage or disengage a machine to or from a drive. Many claw, pin and bush, or gear couplings can be used as clutches by axially moving the driving member. With the additional design element of interlocking teeth, all flexible couplings can be used as clutches.

2.6 Friction clutches

In friction clutches, torques are generated by friction, hydrodynamic or electrodynamic effect. The clutch is actuated externally, even with the shaft rotating (mechanically, hydraulically, pneumatically, magnetical), speed-dependent (centrifugal force, hydrodynamic), torque-dependent (slip clutches, safety clutches), and dependent on the direction of rotation (overrunning clutches).

Of the different clutch types, friction clutches are most commonly used which may contain either dry- or wet- (oil-lubricated) friction elements. Dependent on the friction element and the number of friction surface areas, a distinction is made between cylindrical, cone, flange and disk clutches. The larger the number of friction surface areas, the smaller the size of the clutch. Further criteria are wear, service life, idle torque, cooling, cycle rate, and uniform friction effect (non-chattering).

The PLANOX clutch is a dry-friction multiple disk clutch with one up to three disks, which has been designed with overload protection for application in general mechanical engineering. It is actuated externally by mechanical, electrical, pneumatic or hydraulic force. Uniform transmission of torque is guaranteed by spring pressure even after high cylce rates. The clutch is made in different types and sizes for torques up to $3 \cdot 10^5$ Nm.

Shaft Couplings

Synoptical Table of Torsionally Flexible and Torsionally Rigid Couplings

The AUTOGARD torque limiter is an automatically actuating safety clutch which disconnects driving and driven side by means of a high-accuracy ball-operated mechanism and interrupts the transmission of torque as soon as the set disengagement torque is exceeded. The torque limiter is ready for operation again when the mechanism has been re-engaged during standstill. The clutch is made in different sizes for disengagement torques up to 56,500 Nm.

Speed-controlled clutches allow soft starting of heavy-duty driven machines, the motor accelerating itself at first and then driving the machine. This permits the use of smaller dimensioned motors for high mass moments of inertia and a high number of starts. Speed-controlled clutches are designed as centrifugal clutches with segments, e.g. retaining springs which transmit torques only from a specified operating speed on, or with pellets (powder, balls, rollers). The torque which is generated by friction on the lateral area of the output part increases as the square of the input speed. After running up, the clutch operates without slip. **The FLUDEX coupling** (figure 36) is a hydrodynamic fluid coupling operating according to the Föttinger principle without mechanical friction. The coupling parts on the input (pump) and output (turbine) side are not mechanically connected and thus wear-resistant.

Torque is transmitted by the rotating oil fluid in the coupling accelerated by the radial blades (pulse exchange). Fluid couplings have the same characteristics as turbines; torque increases with the second power, and power capacity is proportional to the third power of the input speed. During steady torque transmission little operating slip occurs which heats up the coupling. As safety elements for limiting the temperature, fusible safety plugs and electronically or mechanically controlled temperature monitors are used. Fluid couplings are mainly used for starting great masses, for separating torsional vibrations, and for limiting overloads during starting and in case of blockages.

Table of Contents Section 12

Vibrations	Page
Symbols and Units	142
General Fundamental Principles	143-145
Solution Proposal for Simple Torsional Vibrators	145/146
Solution of the Differential Equation of Motion	146/147
Formulae for the Calculation of Vibrations	147
Mass	147
Mass Moment of Inertia	147
Symbols and Units of Translational and Torsional Vibrations	148
Determination of Stiffness	149
Overlaying of Different Stiffnesses	150
Conversions	150
Natural Frequencies	150/151
Evaluation of Vibrations	151/152

T	1		
а	m	Length of overhanging end	t
А	m²	Cross-sectional area	т
А	m, rad	Amplitude of oscillation	Т
A _D ; A _e		Damping energy; elastic energy	V
с	Nm/ rad	Torsional stiffness	V
C'	N/m	Translational stiffness; bending stiffnes	x
d	m	Diameter	Â
di	m	Inside diameter	α
da	m	Outside diameter	γ
D	-	Attenuation ratio (Lehr's damping)	δ
D _m	m	Mean coil diameter (coil spring)	ε
e =	2.718	Natural number	
Е	N/m ²	Modulus of elasticity	η
f, f _e	Hz	Frequency; natural frequency	λ.
f	m	Deformation	74
F	N	Force	Λ
F (t)	N	Time-variable force	π =
G	N/m ²	Shear modulus	6
i	-	Transmission ratio	φ, α
İF	-	Number of windings (coil spring)	^
la	m ⁴	Axial moment of area	
l _p	m ⁴	Polar moment of area	
J, J _i	kgm ²	Mass moment of inertia	
J*	kgm ²	Reduced mass moment of inertia of a two-mass vibration generating system	
k	Nms/ rad	Viscous damping in case of torsional vibrations	
k'	Ns/m	Viscous damping in case of trans- lational and bending vibrations	^
I	m	Length; distance between bearings	s
m, m _i	kg	Mass	ψ
M (t)	Nm	Time-variable excitation moment	
Mo	Nm	Amplitude of moment	ω
M _o *	Nm	Reduced amplitude of moment of a two-mass vibration generating system	
n _e	1/min	Natural frequency (vibrations per minute)	Ω
n ₁ ; n ₂	1/min	Input speed; output speed	Note
q	_	Influence factor for taking into account the mass of the shaft when calculating the natural bending frequency	

	S	Time
	s	Period of a vibration
	Nm	Torque
	m ³	Volume
	-	Magnification factor; Dynamic/ static load ratio
	m	Displacement co-ordinate (translational, bending)
	m	Displacement amplitude
	rad	Phase angle
	rad	Phase angle with free vibration
	1/s	Damping constant
	rad	Phase displacement angle with forced vibration
	_	Excitation frequency/natural frequency ratio
	_	Inherent value factor for i-th natural frequency
	-	Logarithmic decrement
-	3.142	Peripheral/diameter ratio
	kg/m ³	Specific density
Pi	rad	Angle of rotation
	rad	Angular amplitude of a vibration
	rad/s	Angular velocity (first time derivation of)
	rad/s ²	Angular acceleration (second time derivation of)
ı	rad	Vibratory angle of the free vibra- tion (homogeneous solution)
р	rad	Vibratory angle of the forced vibration (particular solution)
р	rad	Angular amplitude of the forced vibration
tat	rad	Angular amplitude of the forced vibration under load $(=0)$
	_	Damping coefficient acc. to DIN 740 /18/
	rad/s	Angular velocity, natural radian frequency of the damped vibration
0	rad/s	Natural radian frequency of the undamped vibration
	rad/s	Radian frequency of the excitat- ing vibration
: Th	ne unit "ra	d" may be replaced by "1".

Vibrations General Fundamental Principles

3. Vibrations

3.1 General fundamental principles

Vibrations are more or less regularly occurring temporary variations of state variables. The state of a vibrating system can be described by suitable variables, such as displacement, angle, velocity, pressure, temperature, electric voltage/ current, and the like.

The simplest form of a mechanical vibrating system consists of a mass and a spring with fixed ends, the mass acting as kinetic energy store and the spring as potential energy store, see figure 37. During vibration, a periodic conversion of potential energy to kinetic energy takes place, and vice versa, i.e. the kinetic energy of the mass and the energy stored in the spring are converted at certain intervals of time. Dependent on the mode of motion of the mass, a distinction is made between translational (bending) and torsional vibrating systems as well as coupled vibrating systems in which translational and torsional vibrations occur at the same time, influencing each other.

Further, a distinction is made between free vibrations and externally forced vibrations, and whether the vibration takes place without energy losses (undamped) or with energy losses (damped).

A vibration is free and undamped if energy is neither supplied nor removed by internal friction so that the existing energy content of the vibration is maintained. In this case the system carries out steady-state natural vibrations the frequency of which is determined only by the characteristics of the spring/mass system (natural frequency), figure 39a.

The vibration variation with time x can be described by the constant amplitude of oscillation A and a harmonic function (sine, cosine) the arguments of which contain natural radian frequency $\omega = 2\pi \cdot f$ (f = natural frequency in Hertz) and time, see figure 38.

A damped vibration exists, if during each period of oscillation a certain amount of vibrational energy is removed from the vibration generating system by internal or external friction. If a constant viscous damping (Newton's friction) exists, the amplitudes of oscillation decrease in accordance with a geometric progression, figure 39b. All technical vibration generating systems are subject to more or less strong damping effects.

If the vibrating system is excited by a periodic external force F(t) or moment M(t), this is a forced or stimulated vibration, figure 39c. With the periodic external excitation force, energy can be supplied to or removed from the vibrating system.

After a building-up period, a damped vibrating system does no longer vibrate with its natural frequency but with the frequency of the external excitation force.

Resonance exists, when the applied frequency is at the natural frequency of the system. Then, in undamped systems the amplitudes of oscillation grow at an unlimited degree. In damped systems, the amplitude of oscillation grows until the energy supplied by the excitation force and the energy converted into heat by the damping energy are in equilibrium. Resonance points may lead to high loads in the components and therefore are to be avoided or to be quickly traversed. (Example: natural bending frequency in highspeed gear units).

The range of the occurring amplitudes of oscillation is divided by the resonance point (natural frequency = excitation frequency, critical vibrations) into the subcritical and supercritical oscillation range. As a rule, for technical vibrating systems (e.g. drives), a minimum frequency distance of 15% or larger from a resonance point is required.

Technical vibrating systems often consist of several masses which are connected with each other by spring or damping elements. Such systems have as many natural frequencies with the corresponding natural vibration modes as degrees of freedom of motion. A free, i.e. unfixed torsional vibration system with n masses, for instance, has n-1 natural frequencies. All these natural frequencies can be excited to vibrate by periodic external or internal forces, where mostly only the lower natural frequencies and especially the basic frequency (first harmonic) are of importance.

In technical drive systems, vibrations are excited by the following mechanisms:

a) From the input side:

Starting processes of electric motors, system short circuits, Diesel Otto engines, turbines, unsteady processes, starting shock impulses, control actions.

- b) From transmitting elements: Meshing, unbalance, universal-joint shaft, alignment error, influences from bearings.
- c) From the output side:
 - Principle of the driven machine, uniform, nonuniform, e.g. piston compressor, propeller.

As a rule, periodic excitation functions can be described by means of sine or cosine functions and the superpositions thereof. When analysing vibration processes, a Fourier analysis may often be helpful where periodic excitation processes are resolved into fundamental and harmonic oscillations and thus in comparison with the natural frequencies of a system show possible resonance points.

In case of simple vibrating systems with one or few (maximum 4) masses, analytic solutions for the natural frequencies and the vibration variation with time can be given for steady excitation. For unsteady loaded vibrating systems with one or more masses, however, solutions can be calculated only with the aid of numerical simulation programmes. This applies even more to vibrating systems with non-linear or periodic variable parameters (non-linear torsional stiffness of couplings; periodic meshing stiffnesses). With EDP

Vibrations General Fundamental Principles Solution Proposal for Simple Torsional Vibrators

programmes, loads with steady as well as unsteady excitation can be simulated for complex vibrating systems (linear, non-linear, parameter-excited) and the results be represented in the form of frequency analyses, load as a function of time, and overvoltages of resonance. Drive systems with torsionally flexible couplings can be designed dynamically in accordance with DIN 740 /18/. In this standard, simplified solution proposals for shock-loaded and periodically loaded drives are made, the drive train having been reduced to a two-mass vibration generating system.

3.2 Solution proposal for simple torsional vibrators

Analytic solution for a periodically excited one-(fixed) or two-mass vibration generating system, figure 40.

Differential equation of motion:

One-mass vibration generating system:

 $_{\circ}$ c $\frac{J_{1}+J_{2}}{J_{1}-J_{2}}$ rad s (35)

[1/s]

(36)

(37)

(38)

Two-mass vibration generating system with relative coordinate:

 $+\underbrace{\frac{k}{J^{*}}}_{2} \quad +\underbrace{\frac{c}{J^{*}}}_{c} \quad \frac{M(t)}{J_{1}}$

with $_1 =$

 $J^* \quad \frac{J_1 \quad J_2}{J_1 + J_2}$

Natural radian frequency (undamped): ω_o

<u>c</u> [rad/s]

 f_e = natural frequency in Hertz n_e = natural frequency in 1/min

 ω_0 = natural radian frequency of the undamped

[1/min]

damping constant

Damped natural radian frequency:

vibration in rad/s

 $\frac{1}{2} = \frac{2}{2}$ o $1 = D^2$ (39)

(31)

(32)

(33)

(34)

Vibrations

Solution Proposal for Simple Torsional Vibrators Solution of the Differential Equation of Motion

Attenuation ratio (Lehr's damping): D	a)_Free vibration (homogeneous solution h)				
$D - \frac{k_{\circ}}{2} - \frac{k_{\circ}}{40}$	h A $e^{\{= t\}} \cos(t = t)$ (43)				
 2 c 4 ψ = damping coefficient on torsionally flexible coupling, determined by a damping hysteresis of a period of oscillation acc. to DIN 740 /18/ and/or acc. to Flender brochure 	Constants A and γ are determined by the starting conditions, e.g. by $_{h} = 0$ and $_{h} = 0$ (initial-value problem). In damped vibrating systems ($\delta > 0$) the free component of vibration disappears after a transient period.				
damping energy A _D					
elastic deformation energy A _e	b) Forced vibration (particular solution p)				
Reference values for some components:	M _o 1				
D = 0.0010.01 shafts (material damping	$p = \frac{1}{C} = \frac{1}{(1 = 2)^2 + 4D^2}$				
D = 0.040.08 of steel) D = 0.040.15 (0.2) torsionally flexible cou-	$\cos(\mu t =) \tag{44}$				
D = 0.010.04 plings gear couplings, all-steel couplings, universal joint shafts	Phase angle: $\tan \frac{2 D}{1 = 2}$ (45)				
	Frequency ratio: μ (46)				
Static spring characteristic for one load cycle	One-mass vibration generating system: $M_0^* = M_0^{-1}$ (47)				
	Two-mass vibration generating system: $M_o^* = \frac{J_2}{J_1 + J_2} M_o$ (48)				
	c) Magnification factor				
Figure 41	$_{p}$ $\frac{M_{o}^{*}}{c}$ V cos (μ t =) (49)				
flexible component	$V = \frac{1}{1} = $				
3.3 Solution of the differential equation of motion	$(1 = 2)^2 + 4D^2 = 3 \text{ stat} M_0$				
Periodic excitation moment	\hat{p}_{p} = vibration amplitude of forced vibration				
$M(t) M_o \ \cos \mu \ t \tag{41}$	\hat{s}_{stat} = vibration amplitude of forced vibration at a frequency ratio $\eta = 0$.				
M_o = amplitude of moment [Nm] Ω = exciting circuit frequency [rad/s] Total solution:	The magnification factor shows the ratio of the dynamic and static load and is a measure for the additional load caused by vibrations (figure 42).				

Vibrations

Solution of the Differential Equation of Motion Formulae for the Calculation of Vibrations

3.4 Formulae for the calculation of vibrations

For the calculation of natural frequencies and vibrational loads, a general vibration generating system has to be converted to a calculable substitute system with point masses, spring and damping elements without mass.

3.4.1 Mass

 $m = \varrho \cdot V$ [kg]

 $V = volume [m^3]$

 ρ = specific density [kg/m³]

3.4.2 Mass moment of inertia

r²dm: general integral formula J =

Circular cylinder:

$$J = \frac{1}{32} \varrho \qquad d^4 \quad I = \pi (kgm^2 \varrho)$$

d = diameter [m]

 $I = \text{length of cylinder } \pi m_0$

Solution

h+р

(42)

Table 8 Symbols and units of translational and torsional vibrations							
Term	Quantity	Unit	Explanation				
Mass, Mass moment of inertia	m J	kg kg · m²	Translatory vibrating mass m; Torsionally vibrating mass with mass moment of inertia J				
Instantaneous value of vibration (displacement, angle)	x φ	m rad*)	Instantaneous, time-dependent value of vibration amplitude				
Amplitude	x _{max,} x̂, A _{max,} ^̂, A	m rad	Amplitude is the maximum instantaneous value (peak value) of a vibration.				
Oscillating velocity	×.	m/s rad/s	Oscillating velocity; Velocity is the instantaneous value of the velocity of change in the direction of vibration.				
Inertia force, Moment of inertia forces	m x J	N N∙m	The d'Alembert's inertia force or the moment of inertia force acts in the oppo- site direction of the positive acceleration.				
Spring rate, Torsional spring rate	C' C	Nm N∙m/rad	Linear springs				
Spring force, Spring moment	с' · х с · ф	N N∙m	In case of linear springs, the spring recoil is proportional to deflection.				
Attenuation constant (Damping coefficient), Attenuation constant for rotary motion	k' k	N ∙ s/m Nms/rad	In case of Newton's friction, the damping force is proportional to velocity and attenuation constant (linear damping).				
Damping factor (Decay coefficient)	$\delta = k'/(2 \cdot m)$ $\delta = k/(2 \cdot J)$	1/s 1/s	The damping factor is the damping coefficient referred to twice the mass.				
Attenuation ratio (Lehr's damping)	$D = \delta/\omega_0$ –		For D < 1, a damped vibration exists; for $D \ge 1$, an aperiodic case exists.				
Damping ratio	\hat{X}_n \hat{X}_{n+1} \hat{X}_n \hat{X}_{n+1}		The damping ratio is the relation between two amplitudes, one cycle apart.				
Logarithmic damping decrement	$\frac{2 \qquad D}{1 = D^2}$	-	$ \begin{array}{ccc} \pi & \ln{(\hat{x}_n & \hat{x}_{n+1})} \\ \pi & \ln{(\hat{n}_n & \hat{n}_{n+1})} \end{array} \end{array} $				
Time	t	S	Coordinate of running time				
Phase angle	α	rad	In case of a positive value, it is a lead angle.				
Phase displacement angle	$\epsilon = \alpha_1 - \alpha_2$ rad		Difference between phase angles of two vibration processes with same radian frequency.				
Period of a vibration	$T=2\cdot\pi/\omega_{o}$	s	Time during which a single vibration occurs.				
Frequency of natural vibration	$f = 1/T = \omega_0/(2 \cdot \pi)$	Hz	Frequency is the reciprocal value to a period of vibrations; vibrations per sec.				
Radian frequency of natural vibration	$\omega_0 = 2 \cdot \pi \cdot f$	rad/s	Radian frequency is the number of vibrations in $2 \cdot \pi$ seconds.				
Natural radian frequency (Natural frequency)	₀ <mark>cm</mark> ₀ cJ	rad/s rad/s	Vibration frequency of the natural vibration (undamped) of the system				
Natural radian frequency when damped	$\frac{1}{d} \qquad \frac{1}{d} = \frac{1}{2} \frac{1}{d} $		For a very small attenuation ratio $D < 1$ becomes $\omega_d \approx \omega_0$.				
Excitation frequency	Ω	rad/s	Radian frequency of excitation				
Radian frequency ratio	$\eta = \Omega / \omega_0$	_	Resonance exists at $\eta = 1$.				

*) The unit "rad" may be replaced by "1".

Vibrations

Formulae for the Calculation of Vibrations

3.4.3 Determination of stiffness Table 9 Calculation of stiffness (examples) Stiffness Example Symbol Coil spring i_F = number of windings G = shear modulus ¹) $\frac{G d^4}{8 D_m^3 i_f}$ $\frac{N}{m}$ С d = diameter of wire D_m = mean coil diameter Torsion bar c <u>G lp</u> <u>Nm</u> rad I_p = polar moment of inertia I = length Shaft : $I_p = \frac{d^4}{32}$ d, d_i, d_a = diameters of shafts Hollow shaft : $I_p = \frac{1}{32}(d_a^4 = d_i^4)$ Tension bar $c = \frac{E A}{I} = \frac{N}{m}$ E = modulus of elasticity 1) A = cross-sectional area $\frac{F}{f} \quad \frac{3 \quad E \quad I_a}{I^3} \quad \frac{N}{m}$ Cantilever beam С F = force f = deformation at centre of mass under Shaft : I_a _____64 force F 4 Ia = axial moment of area Hollow shaft : $I_a = \frac{1}{64}(d_a^4 = d_i^4)$ Transverse beam (single load in middle) c $\frac{F}{f}$ $\frac{48}{I^3}$ $\frac{E}{m}$ $\frac{N}{m}$ l/2 Transverse beam with overhanging I = distance between ١F end $\frac{F}{f} = \frac{3 E I_a}{a^2 (I+a)}$ bearings $\frac{N}{m}$ С a = length of overhanging end

1) For steel: $E = 21 \cdot 10^{10} \text{ N/m}^2$; $G = 8.1 \cdot 10^{10} \text{ N/m}^2$

Formulae for the Calculation of Vibrations

Measuring the stiffness:

In a test, stiffness can be determined by measuring the deformation. This is particularly helpful if the geometric structure is very complex and very difficult to acquire.

Translation:

F = applied force [N] f = measured deformation [m]

Torsion:

 $c \stackrel{T}{=} Nm rad$

T = applied torsion torque [Nm]

 φ = measured torsion angle [rad]

Measurements of stiffness are furthermore required if the material properties of the spring material are very complex and it is difficult to rate them exactly. This applies, for instance, to rubber materials of which the resilient properties are dependent on temperature, load frequency, load, and mode of stress (tension, compression, shearing). Examples of application are torsionally flexible couplings and resilient buffers for vibration isolation of machines and internal combustion engines.

These components often have non-linear progressive stiffness characteristics, dependent on the direction of load of the rubber material. For couplings the dynamic stiffness is given, as a rule, which is measured at a vibrational frequency of 10 Hz (vibrational amplitude = 25% of the nominal coupling torque). The dynamic torsional stiffness is greater than the static torsional stiffness, see figure 43.

3.4.4 Overlaying of different stiffnesses

To determine resulting stiffnesses, single stiffnesses are to be added where arrangements in series connection or parallel connection are possible.

Series connection:

(51)

(52)

Rule: The individual springs in a series connection carry the same load, however, they are subjected to different deformations.

 $\frac{1}{c_{ges}} = \frac{1}{c_1} + \frac{1}{c_2} + \frac{1}{c_3} + + \frac{1}{c_n}$ (53)

Parallel connection:

Rule: The individual springs in a parallel connection are always subject to the same deformation.

 $c_{ges} = c_1 + c_2 + c_3 + + c_n$ (54)

3.4.5 Conversions

If drives with different speeds or shafts are combined in one vibration generating system, the stiffnesses and masses are to be converted to a reference speed (input or output). Conversion is carried out as a square of the transmission ratio:

Transmission ratio:

$$\frac{n_1}{n_2} \quad \frac{\text{reference speed}}{\text{speed}} \tag{55}$$

Conversion of stiffnesses c_{n2} and masses J_{n2} with speed n_2 to the respective values c_{n1} and J_{n1} with reference speed n_1 :

$$C_{n1}$$
 c_{n2} i^2 (56)
 J_{n1} J_{n2} i^2 (57)

Before combining stiffnesses and masses with different inherent speeds, conversion to the common reference speed has to be carried out first. Vibrations

Formulae for the Calculation of Vibrations Evaluation of Vibrations

3.4.6 Natural frequencies

 a) Formulae for the calculation of the natural frequencies of a fixed one-mass vibration generating system and a free two-mass vibration generating system.
 Natural frequency f in Hertz (1/s):

One-mass vibration generating system:

Two-mass vibration generating system:

(59)

Torsion :
$$f_e = \frac{1}{2\pi}$$
 $\overline{\frac{c}{J}}$ (58) $f_e = \frac{1}{2\pi}$ $\overline{c} \frac{J_1 + J_2}{J_1 - J_2}$

c = torsional stiffness in [Nm/rad]
J,
$$J_i$$
 = mass moments of inertia in [kgm²]

Translation, Bending :
$$f_e = \frac{1}{2\pi}$$
 $\frac{c}{m}$ (60) $f_e = \frac{1}{2\pi}$ c $\frac{m_1 + m_2}{m_1 - m_2}$ (61)

$$\begin{array}{l} c' = \mbox{translational stiffness} \ (\mbox{bending stiffness}) \ \mbox{in [N/m]} \\ m, \ m_i = \mbox{masses in [kg]} \end{array}$$

(62)

b) Natural bending frequencies of shafts supported at both ends with applied masses with known deformation f due to the dead weight

$$f_e = \frac{q}{2\pi} \quad \frac{\overline{g}}{f} \qquad [Hz]$$

 $g = 9.81 \text{ m/s}^2 \text{ gravity}$

- f = deformation due to dead weight [m]
- q = factor reflecting the effect of the shaft masses on the applied mass
- q = 1 shaft mass is neglected compared with the applied mass
- q = 1.03 ... 1.09 common values when considering the shaft masses
- q = 1.13 solid shaft without pulley
- c) Natural bending frequencies for shafts, taking into account dead weights (continuum); general formula for the natural frequency in the order f_e, i.

$$\mu_{e,i} = \frac{1}{2\pi}$$
 $\frac{\mu_i}{l}^2$ $\frac{\overline{E}}{\varrho A}$ Hz

- $\lambda_i = \text{inherent}$ value factor for the i-th natural frequency
- I = length of shaft [m]
- E = modulus of elasticity [N/m²]
- I = moment of area [m⁴]
- $\rho = \text{density} [\text{kg/m}^3]$
- A = cross-sectional area $[m^2]$
- d = diameter of solid shaft [m]

Table 10 λ -values for the first three natural frequencies, dependent on mode of fixing

Bearing application	λ_1	λ2	λ_3	
	1.875	4.694	7.855	
	4.730	7.853	10.966	
A A	π	2π	3π	
	3.927	7.069	10.210	

For the solid shaft with free bearing support on both sides, equation (63) is simplified to:

$$_{e,i} = \frac{\pi}{8} \frac{d}{i} \sum_{i=1}^{2} \frac{\overline{E}}{\overline{Q}}$$
 Hz (64)

i = 1st, 2nd, 3rd ... order of natural bending frequencies.

3.5 Evaluation of vibrations

The dynamic load of machines can be determined by means of different measurement methods. Torsional vibration loads in drives, for example, can be measured directly on the shafts by means of wire strain gauges. This requires, however, much time for fixing the strain gauges, for calibration, signal transmission and evaluation. Since torques in shafts are generated via bearing pressure in gear units, belt drives, etc., in case of dynamic loads, structure-borne noise is generated which can be acquired by sensing elements at the bearing points in different directions (axial, horizontal, vertical).

(63)

Dependent on the requirements, the amplitudes of vibration displacement, velocity and acceleration can be recorded and evaluated in a sum (effective vibration velocity) or frequencyselective. The structure-borne noise signal reflects besides the torque load in the shafts also unbalances, alignment errors, meshing impulses, bearing noises, and possibly developing machine damages.

To evaluate the actual state of a machine, VDI guideline 2056 ¹⁾ or DIN ISO 10816-1 /19, 20/ is consulted for the effective vibration velocity, as a rule, taking into account structure-borne noise in the frequency range between 10 and 1,000 Hertz. Dependent on the machine support structure (resilient or rigid foundation) and power transmitted, a distinction is made between four machine groups (table 11). Dependent on the vibration velocity, the vibrational state of a

machine is judged to be "good", "acceptable", "still permissible", and "non-permissible". If vibration velocities are in the "non-permissible" range, measures to improve the vibrational state of the machine (balancing, improving the alignment, replacing defective machine parts, displacing the resonance) are required, as a rule, or it has to be verified in detail that the vibrational state does not impair the service life of the machine (experience, verification by calculation). Structure-borne noise is emitted from the machine surface in the form of airborne noise and has an impact on the environment by the generated noises. For the evaluation of noise, sound pressure level and sound intensity are measured. Gear unit noises are evaluated according to VDI guideline 2159 or DIN 45635 /17, 16/, see subsection 1.5.

Table 11 Boundary limits acc. to VDI guideline 2056 ¹⁾ for four machine groups					
Machine groups	Including gear units and machines with input power ratings of	Range classification acc. to VDI 2056 ("Effective value of the vibration velocity" in mm/s)			
		Good	Acceptable	Still permis- sible	Non-per- missible
к	up to approx. 15 kW without special foundation.	up to 0.7	0.7 1.8	1.8 4.5	from 4.5 up
М	from approx. 15 up to 75 kW without special founda- tion. from approx. 75 up to 300 kW and installation on highly tuned, rigid or heavy foundations.	up to 1.1	1.1 2.8	2.8 7.1	from 7.1 up
G	over 300 kW and installa- tion on highly tuned, rigid or heavy foundations.	up to 1.8	1.8 4.5	4.5 11	from 11 up
т	over 75 kW and installa- tion on broadly tuned resi- lient foundations (espe- cially also steel foundations designed according to light- construction guidelines).	up to 2.8	2.8 7	7 18	from 18 up

1) 08/97 withdrawn without replacement; see /20/

Bibliography of Sections 10, 11, and 12

Page

Bibliography

Bibliography

- /1/ DIN 3960: Definitions, parameters and equations for involute cylindrical gears and gear pairs. March 1987 edition. Beuth Verlag GmbH, Berlin
- /2/ DIN 3992: Addendum modification of external spur and helical gears. March 1964 edition. Beuth Verlag GmbH, Berlin
- /3/ DIN 3993: Geometrical design of cylindrical internal involute gear pairs; Part 3. August 1981 edition. Beuth Verlag GmbH, Berlin
- /4/ DIN 3994: Addendum modification of spur gears in the 05-system. August 1963 edition. Beuth Verlag GmbH, Berlin
- /5/ Niemann, G. und Winter, H.: Maschinenelemente, Band II, Getriebe allgemein, Zahnradgetriebe-Grundlagen, Stirnradgetriebe. 3rd edition. Springer Verlag, Heidelberg, New York, Tokyo (1985)
- /6/ Sigg, H.: Profile and longitudinal corrections on involute gears. Semi-Annual Meeting of the AGMA 1965, Paper 109.16
- Hösel, Th.: Ermittlung von Tragbild und Flankenrichtungskorrekturen für Evolventen-Stirnräder. Berechnungen mit dem FVA-Programm "Ritzelkorrektur". Zeitschrift Antriebstechnik 22 (1983) Nr. 12
- /8/ DIN 3990: Calculation of load capacity of cylindrical gears.
 Part 1: Introduction and general influence factors
 Part 2: Calculation of pitting resistance
 Part 3: Calculation of tooth strength
 Part 4: Calculation of scuffing load capacity
 Beuth Verlag GmbH, Berlin, December 1987
- /9/ FVA-Stirnradprogramm: Vergleich und Zusammenfassung von Zahnradberechnungen mit Hilfe von EDV-Anlagen (jeweils neuester Programmstand). FVA-Forschungsvorhaben Nr. 1., Forschungsvereinigung Antriebstechnik, Frankfurt am Main
- /10/ DIN 3990: Calculation of load capacity of cylindrical gears. Application standard for industrial gears.
 Part 11: Detailed method; February 1989 edition
 Part 12: Simplified method; Draft May 1987
 Beuth Verlag GmbH, Berlin
- /11/ DIN 3990: Calculation of load capacity of cylindrical gears.
 Part 5: Endurance limits and material qualities; December 1987
 Beuth Verlag GmbH, Berlin
- /12/ FVA-Arbeitsblatt zum Forschungsvorhaben Nr. 8: Grundlagenversuche zur Ermittlung der richtigen Härtetiefe bei Wälz- und Biegebeanspruchung. Stand Dezember 1976. Forschungsvereinigung Antriebstechnik, Frankfurt am Main

- /13/ FVA-Ritzelkorrekturprogramm: EDV-Programm zur Ermittlung der Zahnflankenkorrekturen zum Ausgleich der lastbedingten Zahnverformungen (jeweils neuester Programmstand). FVA-Forschungsvorhaben Nr. 30. Forschungsvereinigung Antriebstechnik, Frankfurt am Main
- /14/ Niemann, G.: Maschinenelemente 2. Bd., Springer Verlag Berlin, Heidelberg, New York (1965)
- /15/ Theissen, J.: Vergleichskriterien f
 ür Grossgetriebe mit Leistungsverzweigung. VDI-Bericht 488
 "Zahnradgetriebe 1983 mehr Know how f
 ür morgen", VDI-Verlag, 1983
- /16/ DIN 45635: Measurement of noise emitted by machines.
 Part 1: Airborne noise emission; Enveloping surface method; Basic method, divided into 3 grades of accuracy; April 1984 edition
 Part 23: Measurement of airborne noise; Enveloping surface method; Gear transmission; July 1978 edition
 Beuth Verlag GmbH, Berlin
- /17/ VDI-Richtlinien 2159: Emissionskennwerte technischer Schallquellen; Getriebegeräusche; Verein Deutscher Ingenieure, July 1985
- /18/ DIN 740: Flexible shaft couplings. Part 2. Parameters and design principles. August 1986 edition; Beuth Verlag GmbH, Berlin
- /19/ VDI-Richtlinien 2056: Beurteilungsmasstäbe für mechanische Schwingungen von Maschinen. VDI-Handbuch Schwingungstechnik; Verein Deutscher Ingenieure; October 1964; (08/97 withdrawn without replacement)
- /20/ DIN ISO 10816-1: Mechanical vibration Evaluation of machine vibration by measurements on non-rotating parts. August 1997 edition; Beuth Verlag GmbH, 10772 Berlin

TRANSLATION of FLENDER Technical Handbook 2nd Edition 07/2000 Copyright by FLENDER AG Bocholt