F느N․

TECHNICAL HANDBOOK

The head office of A. FRIEDR. FLENDER AG is located in Bocholt. The company was founded at the end of the last century and in the early years of its existence was involved in the manufacture and sales of wooden pulleys. At the end of the 20's, FLENDER started to manufacture gear units, couplings and clutches, and with the
development and manufacture of one of the first infinitely variable speed gear units, FLENDER became a leader in the field of power transmis sion technology.
Today, FLENDER is an international leader in the field of stationary power transmission techno logy, and a specialist in the supply of complete
drive systems. FLENDER manufactures electronic, electrical, mechanical and hydraulic components which are offered both as individual components and as partial or complete systems. FLENDER's world-wide workforce consists of approximately 7,200 employees. Eight manufacturing plants and six sales centres are located in

LENDER, Bocholt

Germany. Nine manufacturing plants, eighteen sales outlets and more than forty sales offices are currently in operation in Europe and overseas.
The eight domestic manufacturing plants form a comprehensive concept for all components involved in the drive train
Core of the entire group of companies is the mechanical power transmission division. With its factories in Bocholt, Penig and the French works FLENDER-Graffenstaden in Illkirch it covers the
spectrum of stationary mechanical drive elements. The product range is rounded off by he geared motors manufactured at FLENDER ÜBINGEN GMBH
The fields of electronics, electrotechnics and motors are covered by LOHER AG which also belongs to the group of companies. FLENDER GUSS GMBH in Wittgensdorf/Saxony put FLENDER in a position to safeguard the supply of semi-finished goods for the FLENDER group and at the same time provide large capacities for
castings for customers individual requirements. With its extensive range of services offered by FLENDER SERVICE GMBH, the group's range of products and services is completed
Thus, FLENDER offers to the full, the expertise for the entire drive train - from the power supply to the processing machine, from the know-how transfer of single components to complete solutions for each kind of application.

LOHER

Ruhstorf

In 1991, LOHER AG became a hundred percent subsidiary of FLENDER AG. The product range covers three-phase motors ranging from 0.1 to $10,000 \mathrm{~kW}$ for low and high voltage, as well as electronic equipment for controlling electrical drives of up to $6,000 \mathrm{~kW}$. Apart from the manufacture of standard motors, the company specializes in the production of motors in special
design according to customers' requirements. The products are used world-wide in the chemical and petrochemical industries, in elevator and mechanical engineering, for electric power generation, in on- and off-shore applications, as well as in the field of environmental technology

MOTOX helical geared motor

FLENDER

Tübingen

The company FLENDER TÜBINGEN GMBH has its origins in a firm founded in Tübingen in 1879 by the optician and mechanic Gottlob Him mel. Today, the main emphasis of the FLENDER TÜBINGEN GMBH production is based on ge ared motors as compact units. Furthermore, the product range includes medium- and high-fre quency generators for special applications in the

Speed-controlled three-phase motors for hot water circulating pump drives for long-distance heating supply

LOHER three-phase slip-ring motor for high voltage with motor-operated short-circuit brush lifting device (KBAV)

MOTOX bevel geared motors driving lifting jacks for the maintenance of the ICE
sectors of heat, welding and soldering technoogy.
About 650 employees are working in the factory and office bullangs located at the outskirts of unbingen. Helical, worm, bevel-helical and variable speed geared motors are made by using he latest manufacturing methods.

FLENDER With an increasing diversification in the field of power transmission technology the importance of couplings is permanently growing.
FLENDER makes torsionally rigid and flexible couplings, clutches and friction clutches, as well couplings, clutches and friction clutches, as well $10,000,000 \mathrm{Nm}$.

Kupplungswerk Mussum

In 1990, the Couplings division was separated from the FLENDER parent plant in Bocholt, and newly established in the industrial area BocholtMussum. With this most modern factory it was aimed at combining all depart-ments involved in a largely independent business sector.

FLENDER-N-EUPEX coupling

Since its foundation in 1899, FLENDER has been manufacturing couplings for industrial applications within an ever growing product range.

FLENDER-N-EUPEX coupling and FLENDER-ELPEX coupling in a pump drive

FLENDER is world-wide the biggest supplier of stationary mechanical power transmission equipment. The product range comprises mainly gear units, worm gear units and variable speed drives
Innovative developments continuously require new standards in the gear unit technology. A wide range of standard gear units, but also of

FLENDER girth gear unit
in a tube mill drive in a tube mill drive

FLENDER

Bocholt

standardized custom-made gear units for almos all drive problems enable FLENDER to offer specific solutions for any demand, high-quality standards and quick deliveries being taken for granted.

FLENDER-CAVEX worm gear unit

FLENDER
 Bocholt

When placing orders in the field of power trans mission technology and for components which go with it, machinery and equipment manufactur ers worldwide prefer to consult specialists who have industry-specific knowledge and expe rience.
 for a wind power station

FLENDER components in a drive
of a wind power station

FLENDER AG has taken that fact into account by setting up industry sector groups. Project teams are working on industry-specific solutions to meet customer demands.

Pumping station in Holland with water screw pump drives by FLENDER

FLENDER bevel-helical gear unit type B3SH 19 with a RUPEX coupling on the output side in a screw pump drive

FLENDER

Getriebewerk Penig

Since April 1, 1990 Getriebewerk Penig has been a hundred percent subsidiary of the FLENDER group.
After its acquisition, the production facilities were considerably expanded and brought up to the atest level of technology. The production of the new FLENDER gear unit series has been centralized at this location. This standard product range which was introduced in 1991

FLENDER bevel-helical gear unit

FLENDER-GRAFFENSTADEN has specialized in the development, design and production of high-speed gear units
FLENDER-GRAFFENSTADEN is an internatio nally leading supplier of gear units and power transmission elements for gas, steam, and water turbines, as well as of power transmission technology for pumps and compressors used in the chemical industry.

FLENDER-GRAFFENSTADEN high-speed
gear unit in a power station drive

FLENDER-GRAFFENSTADEN
high-speed gear unit

FLENDER-GRAFFENSTADEN

Graffenstaden

Customer advice, planning, assembly, spare parts deliveries, and after-sales-service form solid foundation for a high-level cooperation. production used for custom-made machines in he machine building industry are manufactured in Penig.

FLENDER SERVICE
Herne

With the founding of FLENDER SERVICE GMBH, FLENDER succeeded in optimizing cu stomer service even more. Apart from technica after-sales-service, SERVICE GMBH provides a comprehensive service programme including maintenance, repair, machine surveillance, sup

Mobile gear unit surveillance acc. to the vibration analysis method

Data analysis on an ATPC
ply of spare parts, as well as planning, using ply of spare parts, as well as planning, using FLENDER know-how and making use of own engineering and processing capacities. Owing to high flexibility and service at short notice unnecessary down-times of customers equipment The service
ducts but is is not restricted to FLENDER probut is provided for all kinds of gear units and power transmission equipment.

FLENDER GUSS

High-quality cast iron from Saxony - this is guaranteed by the name of FLENDER which is
inked with the long-standing tradition of the major foundry in the Saxonian region
In addition to the requirements of the FLENDER group of companies, FLENDER GUSS GmbH is in a position to provide substantial quantities of high-quality job castings

Charging JUNKER furnaces with pig iron

FLENDER castings stand out for their high quality and high degree of precision

Wittgensdorf is the location of this most modern foundry having an annual production capacity of 60,000 tonnes.

Section 1

Technical Drawings

Surface Texture23/24Geometrical Tolerancing 25-38
Sheet Sizes, Title Block, Non-standard Formats 39
Drawings Suitable for Microfilming 40/4

Section 2

Standardization

ISO Metric Screw Threads (Coarse Pitch Threads) 43
ISO Metric Screw Threads (Coarse and Fine Pitch Threads) 44
Cylindrical Shaft Ends 45
SO Tolerance Zones, Allowances, Fit Tolerances 46/47
Parallel Keys, Taper Keys, and Centre Holes 48
Section 3PhysicsInternationally Determined Prefixes
50
Basic SI Units 50
Derived SI Units 51
Legal Units Outside the SI 51
52
Physical Quantities and Units of Lengths and Their Powers52
Physical Quantities and Units of Time
53/55
53/55
Physical Quantities and Units of Mechanics
Physical Quantities and Units of Mechanics 55/56
Physical Quantities and Units of Electrical Engineering 56
Physical Quantities and Units of Lighting Engineering 57
Different Measuring Units of Temperature 57
Measures of Length and Square Measures 58
Cubic Measures and Weights 59
Energy, Work, Quantity of Heat 59
Power, Energy Flow, Heat Flow 60
Pressure and Tension 60
Velocity 60
Equations for Linear Motion and Rotary Motion 61
Section 4
Mathematics/Geometry
Calculation of Areas63
Calculation of Volumes 64
Section 5
Mechanics/Strength of Materials
Axial Section Moduli and Axial Second Moments of Area Moments of Inertia) of Different Profiles 66
Deflections in Beams67
Values for Circular Sections 68
Stresses on Structural Members and Fatigue Strength of Structures 69

Contents

Contents

Section 6	Page
Hydraulics	
Hydrostatics	71
Hydrodynamics	72
Section 7	
Electrical Engineering	
Basic Formulae	74
Speed, Power Rating and Efficiency of Electric Motors	75
Types of Construction and Mounting Arrangements of Rotating Electrical Machinery	76
Types of Protection for Electrical Equipment (Protection Against Contact and Foreign Bodies)) 77
Types of Protection for Electrical Equipment (Protection Against Water)	78
Explosion Protection of Electrical Switchgear	79/80
Section 8	
Materials	
Conversion of Fatigue Strength Values of Miscellaneous Materials	82
Mechanical Properties of Quenched and Tempered Steels	83
Fatigue Strength Diagrams of Quenched and Tempered Steels	84
General-Purpose Structural Steels	85
Fatigue Strength Diagrams of General-Purpose Structural Steels	86
Case Hardening Steels	87
Fatigue Strength Diagrams of Case Hardening Steels	88
Cold Rolled Steel Strips for Springs	89
Cast Steels for General Engineering Purposes	89
Round Steel Wire for Springs	90
Lamellar Graphite Cast Iron	90
Nodular Graphite Cast Iron	91
Copper-Tin- and Copper-Zinc-Tin Casting Alloys	92
Copper-Aluminium Casting Alloys	92
Aluminium Casting Alloys	93
Lead and Tin Casting Alloys for Babbit Sleeve Bearings	94
Comparison of Tensile Strength and Miscellaneous Hardness Values	95
Values of Solids and Liquids	96
Coefficient of Linear Expansion	97
Iron-Carbon Diagram	97
Fatigue Strength Values for Gear Materials	97
Heat Treatment During Case Hardening of Case Hardening Steels	98
Section 9	
Lubricating Oils	
Viscosity-Temperature-Diagram for Mineral Oils	100
Viscosity-Temperature-Diagram for Synthetic Oils of Poly- α-Olefine Base	101
Viscosity-Temperature-Diagram for Synthetic Oils of Polyglycole Base	102
Kinematic Viscosity and Dynamic Viscosity	103
Viscosity Table for Mineral Oils	104

Section 10 Page
Cylindrical Gear UnitsSymbols and Units106/107
General Introduction 108Geometry of Involute Gears
Load Carrying Capacity of Involute Gears 108-119
Gear Unit Types127-130
Noise Emitted by Gear Units 131-134
Section 11
Shaft Couplings
General Fundamental Principles 136
Rigid Couplings 136
Torsionally Flexible Couplings 136/138
Torsionally Rigid Couplings 138
Synoptical Table of Torsionally Flexible and Torsionally Rigid Couplings 140

Section 12

Vibrations

Symbols and Units
General Fundamental Principles 143-145
Solution Proposal for Simple Torsional Vibrators
Solution of the Differential Equation of Motion
Symbols and Units of Translational and Torsional Vibrations 148
Formulae for the Calculation of Vibrations 149-151
Evaluation of Vibrations151/152
Section 13
Bibliography of Sections 10, 11, and 12153-155
Technical Drawings Page
Surface Texture
Method of indicating surface texture on drawings acc. to DIN ISO 1302 23
Explanation of the usual surface roughness parameters 23
24
Comparison of roughness values 24
Geometrical Tolerancing
General 25
Application; general explanations 25
Kinds of tolerances; symbols; included tolerances 26
Tolerance frame 26
Toleranced features 27
Tolerance zones 27
Datums and datum systems 27-29
Theoretically exact dimensions 29
Detailed definitions of tolerances 29-38
Sheet Sizes, Title Blocks, Non-standard Formats
Sheet sizes for technical drawings 39
Title blocks for technical drawings 39
Non-standard formats for technical drawings 39
Drawings Suitable for Microfilming
General 40Lettering40
Sizes of type 40
Lines acc. to DIN 15 Part 1 and Part 2 40
Ink fountain pens 41
Lettering example with stencil and in handwriting 41

1. Method of indicating surface texture on drawings acc. to DIN 1302	
1.1 Symbols	
Symbol without additional indications. Basic symbol. The meaning must be explained by additional indications.	V
Symbol with additional indications. Any production method, with specified roughness.	$\sqrt[3.2]{ }$
Symbol without additional indications. Removal of material by machining, without specified roughness.	∇
Symbol with additional indications. Removal of material by machining, with specified roughness.	$\stackrel{3.2}{\nabla}$
Symbol without additional indications. Removal of material is not permitted (surface remains in state as supplied).	θ
Symbol with additional indications. Made without removal of material (non-cutting), with specified roughness.	$\sqrt[3.2]{\theta}$

1.2 Position of the specifications of surface texture in the symbol

$\mathrm{a}=$ Roughness value R_{a} in micrometres or microinches or roughness grade number N1 to N12
$\mathrm{b}=$ Production method, surface treatment or coating
$c=$ Sampling length
d = Direction of lay
e $=$ Machining allowance
$f=$ Other roughness values, e.g. R_{z}

Examples			Explanation
Production method			
Any	Material removing	Non-cutting	
$0.8 / \sqrt[N 6]{ }$	$\stackrel{0.8}{\nabla} \quad{ }^{N 6}$	$0.8 / \quad \sqrt[N 6]{\theta}$	Centre line average height R_{a} : maximum value $=0.8 \mu \mathrm{~m}$
$\sqrt{R_{z} 25}$	$\sqrt{R_{z} 25}$	$\sqrt{R_{z} 25}$	Mean peak-to-valley height R_{z} : maximum value $=25 \mu \mathrm{~m}$
$\sqrt{0.25 / R_{z} 1}$			Mean peak-to-valley height R_{z} : maximum value $=1 \mu \mathrm{~m}$ at cut-off $=0.25 \mathrm{~mm}$

2. Explanation of the usual surface roughness parameters
2.1 Centre line average height R_{a} acc. to DIN 4768
The centre line average height R_{a} is the arithmetic average of the absolute values of the distan-
ces y between the profile heights and the centre line within the measuring length. This is equivalent to the height of a rectangle $\left(\mathrm{A}_{\mathrm{g}}\right)$ with a length equal to the evaluation length I_{m} and with an area equal to the sum of the areas enclosed between the roughness profile and the centre line (A_{oi} and $\mathrm{A}_{\text {ui }}$) (see figure 1)

Technical Drawings

Surface Texture

$$
\begin{gathered}
\Sigma \mathrm{A}_{\mathrm{oi}}=\Sigma \mathrm{A}_{\mathrm{ui}} \\
\mathrm{~A}_{\mathrm{g}}=\Sigma \mathrm{A}_{\mathrm{oi}}+\Sigma \mathrm{A}_{\mathrm{ui}}
\end{gathered}
$$

Figure 1

Figure 2
2.2 Mean peak-to-valley height $\mathbf{R}_{\mathbf{z}}$ acc. to DIN 4768
The mean peak-to-valley height R_{z} is the arithmetic average of the single irregularities of five consecutive sampling lengths (see figure 2).
Note:
An exact conversion of the peak-to-valley height R_{z} and the centre line average height R_{a} can neither be theoretically justified nor empirically proved. For surfaces which are generated by manufacturing methods of the group "meta cutting", a diagram for the conversion from R_{a} to R_{z} and vice versa is shown in supplement 1 to DIN 4768 Part 1, based on comparison measurements (see table "Comparison of roughness values").

3. Comparison of roughness values

$\begin{aligned} & \text { DIN } \\ & \text { ISO } \\ & 1302 \end{aligned}$	Roughness values Ra_{a}	$\mu \mathrm{m}$	0.025	0.05	0.1	0.2	0.4	0.8	1.6	3.2	6.3	12.5	25	50
		$\mu \mathrm{in}$	1	2	4	8	16	32	63	125	250	500	1000	2000
	Roughness grade number		N1	N2	N3	N4	N5	N6	N7	N8	N9	N10	N11	N12
Suppl. 1	Roughness	from	0.1	0.25	0.4	0.8	1.6	3.15	6.3	12.5	25	40	80	160
$4768 / 1$	values R_{z} in $\mu \mathrm{m}$	to	0.8	1.6	2.5	4	6.3	12.5	20	31.5	63	100	160	250

Technical Drawings

Geometrical Tolerancing

4. General

4.1 The particulars given are in accordance with the international standard DIN ISO 1101, March 1985 edition.
This standard gives the principles of symbolization and indication on technical drawings of tolerances of form, orientation, location and runout, and establishes the appropriate geometrical definitions. The term "geometrical tolerances" is used in this standard as generic term for these tolerances.

4.2 Relationship between tolerances of size,

 form and positionAccording to current standards there are two possibilities of making indications on technical drawings in accordance with:
a) the principle of independence according to DIN ISO 8015 where tolerances of size, form and position must be adhered to independent of each other, i.e. there is no direct relation between them. In this case reference must be made on the drawing to DIN ISO 8015.
b) the envelope requirements according to DIN 7167, according to which the tolerances of size, form and parallelism are in direct relation with each other, i.e. that the size tolerances limit the form and parallelism tolerances. In this case no special reference to DIN 7167 is required on the drawing.

5. Application; general explanations

5.1 Geometrical tolerances shall be specified on drawings only if they are imperative for the functioning and/or economical manufacture of the respective workpiece. Otherwise, the general tolerances according to DIN 7168 apply.
5.2 Indicating geometrical tolerances does not necessarily imply the use of any particular method of production, measurement or gauging.
5.3 A geometrical tolerance applied to a feature defines the tolerance zone within which the feature (surface, axis, or median plane) is to be contained.
According to the characteristic which is to be tolerated and the manner in which it is dimensioned, the tolerance zone is one of the following:
the area within a circle;
the area between two concentric circles;
the area between two equidistant lines or two parallel straight lines;
the space within a cylinder;

- the space between two coaxial cylinders;
- the space between two parallel planes;
the space within a parallelepiped

The toleranced feature may be of any form or orientation within this tolerance zone, unless a more restrictive indication is given.
5.4 Unless otherwise specified, the tolerance applies to the whole length or surface of the considered feature.
5.5 The datum feature is a real feature of a part which is used to establish the location of a datum
5.6 Geometrical tolerances which are assigned to features referred to a datum do not limit the form deviations of the datum feature itself. The form of a datum feature shall be sufficiently accu rate for its purpose and it may therefore be necessary to specify tolerances of form for the datum features

5.7 See Page 26

5.8 Tolerance frame

The tolerance requirements are shown in a rectangular frame which is divided into two or more compartments. These compartments contain, from left to right, in the following order (see figures 3, 4 and 5):
the symbol for the characteristic to be toleranced;
the tolerance value in the unit used for linear dimensions. This value is preceded by the sign \varnothing if the tolerance zone is circular or cylin drical;
if appropriate, the capital letter or letters identifying the datum feature or features (see fig ures 4 and 5)

\section*{| - | 0.1 |
| :--- | :--- |}

Figure 3

$\phi \mid \phi 0.1$ A C B

Figure 5

Remarks referred to the tolerance, for example
" 6 holes", " 4 surfaces", or " 6 x" shall be written above the frame (see figures 6 and 7).

6 holes	$6 x$
$\phi \phi 0.1$	$\phi \mid \phi 0.1$
Figure 6	Figure 7

5.7 Table 1: Kinds of tolerances; symbols; included tolerances

Tolerances		Symbols	Toleranced characteristics	Included tolerances
Form tolerances		-	Straightness	-
		\square	Flatness	Straightness
		\bigcirc	Circularity (Roundness)	-
		0	Cylindricity	Straightness, Parallelism, Circularity
Tolerances of position ${ }^{1)}$	Orientation tolerances	//	Parallelism	Flatness
		+	Perpendicularity	Flatness
		\angle	Angularity	Flatness
	Location tolerances	\emptyset	Position	-
		($)$	Concentricity, Coaxiality	-
		三	Symmetry	Straightness, Flatness, Parallelism
	Runout tolerances	4	Circular runout, Axial runout	Circularity, Coaxiality

1) Tolerances of position always refer to a datum feature or theoretically exact dimensions.

Table 2: Additional symbols

Description		Symbols
Toleranced feature indications	direct	$\frac{1}{\pi}$
	direct	Anm,
	by capital letter	A
Theoretically exact dimension		50

Technical Drawings

Geometrical Tolerancing

as an extension of a dimension line when the tolerance refers to the axis or median plane defined by the feature so dimensioned (see figures 11 to 13).

on the axis or the median plane when the tolerance refers to the common axis or median plane of two features (see figure 14).

Note:
Whether a tolerance should be applied to the contour of a cylindrical or symmetrical feature or to its axis or median plane, depends on the functional requirements
5.10 Tolerance zones

The tolerance zone is the zone within which all
the points of a geometric feature (point, line, sur face, median plane) must lie. The width of the tolerance zone is in the direction of the arrow o the leader line joining the tolerance frame to the feature which is toleranced, unless the tolerance value is preceded by the sign \varnothing (see figures 15 and 16).

Where a common tolerance zone is applied to several separate features, the requirement is in dicated by the words "common zone" above the tolerance frame (see figure 17).

Figure 17

5.11 Datums and datum systems

Datum features are features according to which a workpiece is aligned for recording the tolerated deviations.
5.11.1 When a toleranced feature is referred to a datum, this is generally shown by datum letters. The same letter which defines the datum is re peated in the tolerance frame.
To identify the datum, a capital letter enclosed in a frame is connected to a solid datum triangle (see figure 18).

Figure 18

The datum triangle with the datum letter is placed:
on the outline of the feature or an extension of the outline (but clearly separated from the dimension line), when the datum feature is the line or surface itself (see figure 19).

Figure 19
as an extension of the dimension line when the datum feature is the axis or median plane (see figures 20 and 21).

Note:

If there is not enough space for two arrows, one of them may be replaced by the datum triangle (see figure 21).

on the axis or median plane when the datum is:
a) the axis or median plane of a single feature (for example a cylinder)
b) the common axis or median plane formed by two features (see figure 22).

Figure 22

If the tolerance frame can be directly connected with the datum feature by a leader line, the datum letter may be omitted (see figures 23 and 24).

Figure 23 Figure 24

A single datum is identified by a capital letter (see figure 25).
A common datum formed by two datum features is identified by two datum letters separated by a hyphen (see figures 26 and 28).
In a datum system (see also 5.11.2) the sequence of two or more datum features is impor tant. The datum letters are to be placed in differ ent compartments, where the sequence from left to right shows the order of priority, and the datum letter placed first should refer to the directiona datum feature (see figures 27, 29 and 30).

Figure 25

Figure 26

- Secondary datum

Primary datum $\perp \quad L$ Tertiary datum
Figure 27

5.11.2 Datum system

A datum system is a group of two or more datums to which one toleranced feature refers in com mon. A datum system is frequently required because the direction of a short axis cannot be determined alone.
Datum formed by two form features (common datum):

Figure 28
Datum system formed by two datums (short axis "A" and directional datum "B"):

Technical Drawings

Geometrical Tolerancing

Datum system formed by one plane and one perpendicular axis of a cylinder:
Datum " A " is the plane formed by the plane con act surface. Datum " B " is the axis of the largest inscribed cylinder, the axis being at right angles with datum "A" (see figure 30).

5.12 Theoretically exact dimensions

If tolerances of position or angularity are prescribed for a feature, the dimensions determining the theoretically exact position or angle shall not be toleranced.
These dimensions are enclosed, for example 30. The corresponding actual dimensions of the part are subject only to the position tolerance or angu-
larity tolerance specified within the tolerance frame (see figures 31 and 32).

Figure 31

Figure 32

5.13 Detailed definitions of tolerances

Symbol	Definition of the tolerance zone	Indication and interpretation
	5.13.1 Straightness tolerance	
	The tolerance zone when projected in a plane is limited by two parallel straight lines a distance t apart. Figure 33	Any line on the upper surface parallel to the plane of projection in which the indication is shown shall be contained between two parallel straight lines 0.1 apart. Figure 34 Any portion of length 200 of any generator of the cylindrical surface indicated by the arrow shall be contained between two parallel straight lines 0.1 apart in a plane containing the axis. Figure 35

5.13.3 Circularity tolerance

The tolerance zone in the considered plane is limited by two concentric circles a distance t apart.

Figure 42

Technical Drawings

Geometrical Tolerancing

The circumference of each cross-section of the outside diameter shall be contained between two co-planar concentric circles 0.03 apart.

Figure 43

The circumference of each cross-section shall be contained between two co-planar concentric circles 0.1 apart.

/ /

The tolerance zone is limited by a parallelepiped of section $t_{1} \cdot t_{2}$ and parallel to the datum line if the tolerance is specified in two planes perpendicular to each other.

Figure 52

Parallelism tolerance of a line with reference to a datum line
The tolerance zone when projected in a $\begin{aligned} & \text { The toleranced axis shall be contained }\end{aligned}$ plane is limited by two parallel straight between two straight lines 0.1 apart, which lines a distance t apart and parallel to the are parallel to the datum axis A and lie in the datum line, if the tolerance zone is only vertical direction (see figures 48 and 49). specified in one direction.

Figure 47

Figure 50

Figure 48

The toleranced axis shall be contained between two straight lines 0.1 apart, which are parallel to the datum axis A and lie in the horizontal direction.

Figure 51
The toleranced axis shall be contained in a parallelepipedic tolerance zone having a width of 0.2 in the horizontal and 0.1 in the vertical direction and which is parallel to the datum axis A (see figures 53 and 54).

Technical Drawings

Geometrical Tolerancing

Parallelism tolerance of a surface with reference to a datum surface
The tolerance zone is limited by two parallel planes a distance t apart and parallel to the datum surface.

The toleranced surface shall be contained between two parallel planes 0.01 apart and parallel to the datum surface D (figure 62).

Figure 62

All the points of the toleranced surface in a length of 100, placed anywhere on this surface, shall be contained between two parallel planes 0.01 apart and parallel to the datum surface A (figure 63)

Symbol	Definition of the tolerance zone	Indication and interpretation
	5.13.6 Perpendicularity tolerance	Perpendicularity tolerance of a line with reference to a datum lineThe tolerance zone when projected in a plane is limited by two parallel straight lines a distance t apart and perpendicular to the datum line.

Perpendicularity tolerance of a line with reference to a datum surface
The tolerance zone when projected in a The toleranced axis of the cylinder, to which plane is limited by two parallel straight the tolerance frame is connected, shall be lines a distance t apart and perpendicular contained between two parallel planes 0.1 to the datum plane if the tolerance is specified only in one direction.

Figure 66
The tolerance zone is limited by a parallelepiped of section $t_{1} \cdot t_{2}$ and perpendicular to the datum surface if the tolerance is specified in two directions perpendicular to each other.

Figure 68
The tolerance zone is limited by a cylinder of diameter t perpendicular to the datum surface if the tolerance value is preceded by the sign \varnothing.

Figure 70

Figure 67
The toleranced axis of the cylinder shall be contained in a parallelepipedic tolerance zone of $0.1 \cdot 0.2$ which is perpendicular to the datum surface.

Figure 69
The toleranced axis of the cylinder to which the tolerance frame is connected shall be contained in a cylindrical zone of diameter 0.01 perpendicular to the datum surface A.

Figure 71

Figure 85
Each of the toleranced lines shall be contained between two parallel straight lines 0.05 apart which are symmetrically disposed about the theoretically exact position of the considered line, with reference to the surface A (datum surface).
(A-4

The axis of the hole shall be contained within a cylindrical zone of diameter 0.08 the axis of which is in the theoretically exact position of the considered line, with reference to the surfaces A and B (datum surfaces).

Each of the axes of the eight holes shall be contained within a cylindrical zone of diameter 0.1 the axis of which is in the theoretically exact position of the considered hole, with surfaces).

Figure 82

Positional tolerance of a flat surface or a median plane

The tolerance zone is limited by two parallel planes a distance t apart and disposed symmetrically with respect to the theoretically exact position of the considered surface.

The inclined surface shall be contained between two parallel planes which are 0.05 apart and which are symmetrically disposed with respect to the theoretically exact posito the considered surface with reference the dalinder B (datum line). atum cylinder B (datum line)

Geometrical Tolerancing

Symbol	Definition of the tolerance zone	Indication and interpretation
	Symmetry tolerance of a line or an axis The tolerance zone is limited by a parallel- epiped of section $\mathrm{t}_{1} \cdot \mathrm{t}_{2}$, the axis of which coincides with the datum axis if the toler- ance is specified in two directions perpen- dicular to each other.	The axis of the hole shall be contained in a parallelepipedic zone of width 0.1 in the hori- zontal and 0.05 in the vertical direction and the axis of which coincides with the datum axis formed by the intersection of the two me- dian planes of the datum slots $\mathrm{A}-\mathrm{B}$ and $\mathrm{C}-\mathrm{D}$.

The radial runout shall not be greater than 0.2 in any plane of measurement when measuring the toleranced part of a revolution about the centre line of hole A (datum axis).

Figure 99

Circular runout tolerance - axial

| The tolerance zone is limited at any radial | The axial runout shall not be greater than 0.1 |
| :--- | :--- | :--- | position by two circles a distance t apar lying in a cylinder of measurement, the axis of which coincides with the datum

at any position of measurement during one revolution about the datum axis D

Figure 102

Technical Drawings

Geometrical Tolerancing

Symbol	Definition of the tolerance zone	Indication and interpretation
4	Circular runout tolerance in any direction	
	The tolerance zone is limited within any cone of measurement, the axis of which coincides with the datum axis by two circles a distance t apart. Unless otherwise specified the measuring direction is normal to the surface. Figure 103	The runout in the direction indicated by the arrow shall not be greater than 0.1 in any cone of measurement during one revolution about the datum axis C . Figure 104 The runout in the direction perpendicular to the tangent of a curved surface shall not be greater than 0.1 in any cone of measurement during one revolution about the datum axis C. Figure 105
	Circular runout tolerance in a specified direction	
	The tolerance zone is limited within any cone of measurement of the specified angle, the axis of which coincides with the datum axis by two circles a distance t apart.	The runout in the specified direction shall not be greater than 0.1 in any cone of measurement during one revolution about the datum axis C . Figure 106

Technical Drawings

Sheet Sizes, Title Block,
Non-standard Formats

Technical drawings [extract from DIN 476 (10.76) and DIN 6671 Part 6 (04.88)] 6. Sheet sizes The DIN 6771 standard Part 6 applies to the pre-		sentation of drawing forms even if they are created by CAD. This standard may also be used for other technical documents. The sheet sizes listed below have been taken from DIN 476 and DIN 6771 Part 6.	
Table 3			
Sheet sizes acc. to DIN 476, A series	Trimmed sheet $a \times b$	Drawing area 1) $a_{1} \times b_{1}$	Untrimmed shee $a_{2} \times b_{2}$
A0	841×1189	831×1179	880×1230
A1	594×841	584×831	625×880
A2	420×594	410×584	450×625
A3	297×420	287×410	330×450
A4	210×297	200×287	240×330

1) The actually available drawing area is reduced by the title block, the filing margin, the possible sectioning margin, etc.

6.1 Title block

Formats \geq A3 are produced in broadside. The title block area is in the bottom right corner of the trimmed sheet. For the A4 format the title block area is at the bottom of the short side (upright format).

6.2 Non-standard formats

Non-standard formats should be avoided. When necessary they should be created using the
dimensions of the short side of an A-format with the long side of a greater A -format.

Technical Drawings

Drawings Suitable for
Microfilming

7. General

In order to obtain perfect microfilm prints the fol lowing recommendations should be adhered to: 7.1 Indian ink drawings and CAD drawings show the best contrasts and should be preferred for this reason
7.2 Pencil drawings should be made in special cases only, for example for drafts.
Recommendation:
2H-lead pencils for visible edges, letters and dimensions;
3 H -lead pencils for hatching, dimension lines and hidden edges.

Type sizes
Table 4: Type sizes for drawing formats ($\mathrm{h}=$ type height, $\mathrm{b}=$ line width)

Application range for lettering	Paper sizes			
	A 0 and A1		$\mathrm{A} 2, \mathrm{~A} 3$ and A4	
	h	b	h	b
Type, drawing no.	10	1	7	0.7
Texts and nominal dimensions	5	0.5	3.5	0.35
Tolerances, roughness values, symbols	3.5	0.35	2.5	0.25

9.1 The type sizes as assigned to the paper sizes in table 4 must be adhered to with regard to their application range. Larger type heights are
10. Lines according to DIN 15 Part 1 and Part 2

Table 5: Line groups, line types and line widths

Line group	0.5	0.7
Drawing format	A4, A3, A2	A1, A0
Line type	Line width	
Solid line (thick)	0.5	0.7
Solid line (thin)	0.25	0.35
Short dashes (thin) $\quad-\quad------$	0.25	0.35
Dot-dash line (thick) - - - - -	0.5	0.7
Dot-dash line (thin) - - - - - -	0.25	0.35
Dash/double-dot line (thin) __ - - __- - -	0.25	0.35
Freehand (thin)	0.25	0.35

also permissible. Type heights smaller by approx. 20% will be accepted if this is required in a drawing because of restricted circumstances.

8. Lettering

For the lettering - especially with stencil - the vertical style standard lettering has to be used acc. to DIN 6776 Part 1, lettering style B, vertical (ISO 3098). In case of manual lettering the vertical 3098). In case of manual lettering the vertical
style or sloping style standard lettering may be style or sloping style standard lettering may be
used according to DIN 6776 Part 1, lettering style used according
8.1 The minimum space between two lines in a drawing as well as for lettering should be at leas once, but better twice the width of a line in order to avoid merging of letters and lines in case of reductions.

Technical Drawings

Drawings Suitable for
Microfilming
10.1 Line groups 0.5 and 0.7 with the pertaining line width according to table 5 may only be used. Assignment to the drawing formats A1 and A0 is prescribed. For the A4, A3 and A2 formats, line group 0.7 may be used as well.

11. Indian ink fountain pen

The use of the type sizes according to table 4 and the lines according to table 5 permits a restricted number of 5 different fountain pens (line width $0.25 ; 0.35 ; 0.5 ; 0.7 ; 1 \mathrm{~mm}$).
12. Lettering examples for stenciling and handwritten entries
12.1 Example for formats A4 to A2

Standardization

ISO Metric Screw Threads (Coarse Pitch Threads)
ISO Metric Screw Threads (Coarse and Fine Pitch Threads) 44
Cylindrical Shaft Ends 45
ISO Tolerance Zones, Allowances, Fit Tolerances; Inside Dimensions (Holes) 46
ISO Tolerance Zones, Allowances, Fit Tolerances; Outside Dimensions (Shafts) 47
Parallel Keys, Taper Keys, and Centre Holes

Standardization

ISO Metric Screw Threads
(Coarse Pitch Threads)

ISO metric screw threads (coarse pitch threads) following DIN 13 Part 1, 12.86 edition

Diameters of series 1 should be preferred to those of series 2, and these again to those of series 3 .										
Nominal thread diameter			Pitch P mm	Pitch diameter $\begin{gathered} \mathrm{d}_{2}=\mathrm{D}_{2} \\ \mathrm{~mm} \end{gathered}$	Core diameter		Depth of thread		Round R mm	Tensile stress crosssection $\mathrm{A}_{\mathrm{s}}{ }^{1)}$ mm^{2}
3			0.5	2.675	2.387	2.459	0.307	0.271	0.072	5.03
	3.5		0.6	3.110	2.764	2.850	0.368	0.325	0.087	6.78
4			0.7	3.545	3.141	3.242	0.429	0.379	0.101	8.78
	4.5		0.75	4.013	3.580	3.688	0.460	0.406	0.108	11.3
5			0.8	4.480	4.019	4.134	0.491	0.433	0.115	14.2
6			1	5.350	4.773	4.917	0.613	0.541	0.144	20.1
		7	1	6.350	5.773	5.917	0.613	0.541	0.144	28.9
8			1.25	7.188	6.466	6.647	0.767	0.677	0.180	36.6
		9	1.25	8.188	7.466	7.647	0.767	0.677	0.180	48.1
10			1.5	9.026	8.160	8.376	0.920	0.812	0.217	58.0
		11	1.5	10.026	9.160	9.376	0.920	0.812	0.217	72.3
12			1.75	10.863	9.853	10.106	1.074	0.947	0.253	84.3
	14		2	12.701	11.546	11.835	1.227	1.083	0.289	115
16			2	14.701	13.546	13.835	1.227	1.083	0.289	157
	18		2.5	16.376	14.933	15.294	1.534	1.353	0.361	193
20			2.5	18.376	16.933	17.294	1.534	1.353	0.361	245
	22		2.5	20.376	18.933	19.294	1.534	1.353	0.361	303
24			3	22.051	20.319	20.752	1.840	1.624	0.433	353
	27		3	25.051	23.319	23.752	1.840	1.624	0.433	459
30			3.5	27.727	25.706	26.211	2.147	1.894	0.505	561
	33		3.5	30.727	28.706	29.211	2.147	1.894	0.505	694
36			4	33.402	31.093	31.670	2.454	2.165	0.577	817
	39		4	36.402	34.093	34.670	2.454	2.165	0.577	976
42			4.5	39.077	36.479	37.129	2.760	2.436	0.650	1121
	45		4.5	42.077	39.479	40.129	2.760	2.436	0.650	1306
48			5	44.752	41.866	42.587	3.067	2.706	0.722	1473
	52		5	48.752	45.866	46.587	3.067	2.706	0.722	1758
56			5.5	52.428	49.252	50.046	3.374	2.977	0.794	2030
	60		5.5	56.428	53.252	54.046	3.374	2.977	0.794	2362
64			6	60.103	56.639	57.505	3.681	3.248	0.866	2676
	68		6	64.103	60.639	61.505	3.681	3.248	0.866	3055

1) The tensile stress cross-section is calculated acc. to DIN 13 Part 28 with formula
$A_{s} \frac{\pi}{4} \quad \frac{d_{2}+d_{3}}{2}$

Standardization

SO Metric Screw Threads
(Coarse and Fine Pitch Threads)

Selection of nominal thread diameters and pitches for coarse and fine pitch threads from 1 mm to 68 mm diameter, following DIN 13 Part 12, 10.88 edition											
Nominal thread diameter $d=D$			Coarse pitch thread	Pitches P for fine pitch threads							
Series 1	Series 2	$\begin{gathered} \text { Series } \\ 3 \end{gathered}$		4	3	2	1.5	1.25	1	0.75	0.5
$\begin{aligned} & \hline 1 \\ & 1.2 \end{aligned}$	1.4		$\begin{aligned} & 0.25 \\ & 0.25 \\ & 0.3 \end{aligned}$								
$\begin{aligned} & 1.6 \\ & 2 \end{aligned}$	1.8		$\begin{aligned} & 0.35 \\ & 0.35 \\ & 0.4 \end{aligned}$								
$\begin{aligned} & 2.5 \\ & 3 \end{aligned}$	2.2		$\begin{aligned} & 0.45 \\ & 0.45 \\ & 0.5 \end{aligned}$								
4 5	3.5		$\begin{aligned} & 0.6 \\ & 0.7 \\ & 0.8 \\ & \hline \end{aligned}$								$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$
$\begin{array}{r} 6 \\ 8 \\ 10 \\ \hline \end{array}$			$\begin{aligned} & 1 \\ & 1.25 \\ & 1.5 \end{aligned}$					1.25	1 1	$\begin{aligned} & 0.75 \\ & 0.75 \\ & 0.75 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$
12	14	15	$\begin{aligned} & 1.75 \\ & 2 \end{aligned}$				$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.25 \end{aligned}$	1 1 1		
16	18	17	2 2.5			2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		1 1 1		
$\begin{aligned} & 20 \\ & 24 \\ & \hline \end{aligned}$	22		$\begin{aligned} & 2.5 \\ & 2.5 \\ & 3 \end{aligned}$			$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$		1 1 1		
	27	$\begin{aligned} & 25 \\ & 26 \end{aligned}$	3			2	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$				
30		$\begin{aligned} & 28 \\ & 32 \end{aligned}$	3.5			2	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$				
36	33	35	$\begin{aligned} & 3.5 \\ & 4 \\ & \hline \end{aligned}$		3	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	1.5 1.5 1.5				
	39	$\begin{aligned} & 38 \\ & 40 \end{aligned}$	4		3	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$				
$\begin{aligned} & 42 \\ & 48 \\ & \hline \end{aligned}$	45		$\begin{aligned} & 4.5 \\ & 4.5 \\ & 5 \end{aligned}$		3 3 3	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$				
	52	$\begin{aligned} & 50 \\ & 55 \end{aligned}$	5		3	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$				
56	60	58	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	3 3	2 2	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$				
64	68	65	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	4 4	3 3	2 2 2					

Standardization

Cylindrical Shaft Ends

Cylindrical shaft ends								Cylindrical shaft ends							
Acc. to DIN 748/1, 1.70 edition					FLENDER works standard W 0470, 5.82 edition			Acc. to DIN 748/1, 1.70 edition					FLENDER works standard W 0470, 5.82 edition		
	meter ries $\begin{gathered} 2 \\ \mathrm{~mm} \end{gathered}$	ISO tolerance zone	Long mm	gth Short mm	Diameter mm	Length mm	$\begin{aligned} & \text { ISO } \\ & \text { toler- } \\ & \text { ance } \\ & \text { zone } \end{aligned}$	$\begin{gathered} \text { Diam } \\ \text { Seri } \\ 1 \\ \mathrm{~mm} \end{gathered}$	meter ries $\begin{gathered} 2 \\ \mathrm{~mm} \end{gathered}$	ISO tolerance zone	Long mm	gth Short mm	Diameter mm	Length mm	ISO tolerance zone
6			16					100			210	165	100		m6
7			16					110			210	165	110		
8			20					120			210	165	120	210	
9			20						130		250	200	130	210	
10			23	15				140			250	200	140	240	
11			23	15					150		250	200	150		
12			30	18				160			300	240	160	270	
									170		300	240	170		
$\begin{aligned} & 14 \\ & 16 \end{aligned}$			30	18	14	30		180			300	240	180		
			40	28					190		350	280	190	310	
19			40	28	19			200			350	280	200		
$\begin{aligned} & 20 \\ & 22 \end{aligned}$			50	36	20	35	k6	220			350		220	350	
		k6	50	36	22						350	280		350	
$\begin{aligned} & 24 \\ & 25 \end{aligned}$			50	36	24				240		410	330	240		
			60	42	25	40		250			410	330	250	400	
28			60	42	28				260		410	330	260		n6
30			80	58	30	50		280			470	380	280	450	
32			80	58	32				300		470	380	300		
35 38			80	58	35	60		320			470	380	320	500	
			80	58	38				340		550	450	340	550	
$\begin{aligned} & 40 \\ & 42 \end{aligned}$			110	82	40	70									
			110	82	42	70		360			550	450	360	590	
42			110	82	45				380		550	450	380		
45			110	82	48	80		400			650	540	400	650	
50			110	82	50		m6		420		650	540	420	650	
55			110	82	55	90			440		650	540	440	690	
60			140	105	60	105		450			650	540	450		
			140	105	65				460		650	540	460	750	
70			140	105	70	120			480		650	540	480		
75		m6	140	105	75	120		500			650	540	500	790	
80			170	130	80	140			530		800	680			
85			170	130	85			560			800	680			
90			170	130	90				600		800	680			
95			170	130	95	160		630			800	680			

Standardization

SO Tolerance Zones, Allowances, Fit Tolerances
Inside Dimensions (Holes)

ISO tolerance zones, allowances, fit tolerances; Inside dimensions (holes) acc. to DIN 7157, 1.66 edition; DIN ISO 286 Part 2, 11.90 edition																		
	$\mu \mathrm{H}$																	
							Tolerance zones shown for nominal dimension 60 mm											
	+ 400																	
	+ 200																	
	+ 100																	
	- 100																	
	-200																	
	-300																	
	-400																	
	-500																	
ISO abbrev.	Series 1 Series 2	P7	N7	N9	M7	K7	J6	J7	H7	H8	H11	G7	F8	E9	D9	D10	C11	A11
${ }_{\substack{\text { from } \\ \text { to }}}$	[$\begin{aligned} & 1 \\ & 3\end{aligned}$	-6	$\begin{aligned} & -4 \\ & -14 \end{aligned}$	$\begin{aligned} & -4 \\ & -29 \end{aligned}$	-2	-10	$\pm{ }^{+2}$	+4	+10	$\begin{array}{\|c\|} \hline+14 \\ \hline \end{array}$	+ 60	+12 +2	+ ${ }_{+}^{20}$	+ ${ }_{+}^{+39}$	+ 4	+60 +20	+120 +60	A1 +330 +270
above	${ }^{3}$	-8	-4	0	-	+ 3	+ 5	+ 6	+12	+18	+ 75	+16	+ 28	+ 50	+60	+ 78	+145	+345
to	6	-20	-16	-30	-12	-9	- 3	-6	0	0	0	4	+ 10	+ 20	+ 30	+ 30	+ 70	+270
above to	6 10	-9	-4 -19	-36	-15	+ ${ }_{+}^{+5}$	+5 +4	+ ${ }_{+}^{+8}$	+15	+22	+90	+20 +5	$\begin{array}{r} +35 \\ +13 \\ + \end{array}$	$\begin{array}{r} +61 \\ +\quad 65 \\ \hline \end{array}$	+ 76	$\begin{aligned} & +98 \\ & +40 \end{aligned}$	+170 +80	+370 +280
above	10 14																	
¢ $\begin{aligned} & \text { above } \\ & \text { to }\end{aligned}$	14 14 18	-29	-5 -23	-43	-18	${ }_{-12}^{+6}$	${ }_{-5}^{+}$	${ }_{-8}^{+8}$	+ ${ }^{+18}$	+27	+100	+ +6	+ +16	+ +32	+5 +50	+120 +50	+ + +205	$\stackrel{+}{+400}$
above	18 24	-14	-7			+ 6	+ 8	+12	+21	+33	+130	+28			+117	+149	+240	+430
above	24 30	-35	-28	-52	-21	-15	- 5	-9	0	,	0	+ 7	+ 20	+ 40	+ 65	+ 65	+110	+300
above																	+280	$+470$
to	40	-17	-8 -33	-62	-25	${ }_{-18}^{+}$	+10 -6	${ }_{-11}^{+14}$	+25	+39	+160	+34	+64	+ +112	+142	+180	+120	+310
above ${ }^{\text {a }}$ (o	40 50	-42	-33	-62	-25	-18	- 6	-11				+ 9	+ 25	+ 50		+ 80	+290	+480 +320 +380
above to	50 65																+330 +140	+530 +340 + +
	65 60 80	-51	-39	-74	-30	${ }_{-21}^{+}$	${ }_{-6}^{+13}$	${ }_{-12}^{+18}$	+ 0	+46	+190	+10	+ +30	+ +60	${ }_{+}^{+100}$	+100	+140 +340 +150	+ +550 + +560 + + +
-	80 100																+390 +170	+600 +380
	100 100 120	-24 -59	- $\begin{aligned} & -10 \\ & -45\end{aligned}$	-87	-35	${ }_{-25}^{+10}$	+6	${ }_{-13}^{+22}$	+35	${ }_{0}^{+54}$	+220	$\stackrel{+12}{+47}$	$\left\lvert\, \begin{aligned} & +90 \\ & +36 \end{aligned}\right.$	+ +159	${ }_{+120}^{+207}$	+120	+1700	+380 +630 +410
\% above	120																$+450$	$\stackrel{+710}{+760}$
	140																+200	+460
	140 160	-28	$\begin{gathered} -12 \\ -52 \\ -5 \end{gathered}$	-100	-40	$\begin{gathered} +12 \\ -28 \end{gathered}$	$\begin{array}{\|} +18 \\ -7 \end{array}$	${ }_{-14}^{+26}$	$\begin{array}{\|c} +40 \\ 0 \end{array}$	$\left\lvert\, \begin{gathered} +63 \\ 0 \end{gathered}\right.$	+250	$\begin{aligned} & +54 \\ & +14 \end{aligned}$	$\left\|\begin{array}{r} +106 \\ +43 \end{array}\right\|$	$\left\|\begin{array}{l} +185 \\ +85 \end{array}\right\|$	$\begin{aligned} & +245 \\ & +145 \end{aligned}$	$\begin{aligned} & +305 \\ & +145 \end{aligned}$	+460	${ }_{+520}^{+770}$
above to	160 180																+480 +230	+830 +580
above	180 200																+530 +240	+950 +660 +1
above	200 225	-33	-14	-115	-46	${ }_{-33}^{+13}$	+22	${ }_{+}^{+30}$	+46	+72	+290	$+61$	+122	+215	+285	+355	+550	+1030
$\frac{\text { to }}{\text { above }}$	225	-79	-60	-115	-46								+ 50	+100	+170	+170	+260	+ 740
above	$\stackrel{2}{25}$																+280 +280	${ }_{+}^{+110}$
above	250 280																+620 +300 +	+1240 +920
above	280	-88	-66	-130	-52	${ }_{-36}$	-7	-16	0	0	+320	+17	+ 56	+110	+190	+190	+650	+1370
to	315																+330	+1050
above	315 355	-41															+720 +360 +40	+1560 +1200
above	355 400	-98	-73	-140	-57	-40	- 7	-18	0	0		+18	+ 62	+125	+210	+210	+760 +400 +4	+1710 +1350
above	400 450															+480	+840 +440	+1900 +1500
above to	$\begin{aligned} & 450 \\ & 450 \\ & 500 \\ & \hline \end{aligned}$	-108	-80	-155	-63	${ }_{-45}$	+7	${ }_{-20}$	+6	0		+20	+68	+135	+230	+230	$\begin{array}{\|l} \hline+880 \\ +480 \\ \hline \end{array}$	+2050 +1650
$\begin{gathered} \text { ISO } \\ \text { abbrev. } \end{gathered}$	$\begin{aligned} & \text { Series } 1 \\ & \text { Series } 2 \end{aligned}$	P7	N7	N9	M7	K7	J6	J7	H7	H8	H11	G7	F8	E9	D9	D10	C11	A11

Standardization

SO Tolerance Zones, Allowances, Fit Tolerances
Outside Dimensions (Shafts)

Standardization

Parallel Keys, Taper Keys,
and Centre Holes

Table of Contents Section 3

Physics Page
Internationally Determined Prefixes 50
Basic SI Units 50
Derived SI Units 51
Legal Units Outside the SI 51
Physical Quantities and Units of Lengths and Their Powers 52
Physical Quantities and Units of Time 53
Physical Quantities and Units of Mechanics 53/55
Physical Quantities and Units of Thermodynamics and Heat Transfer 55/56
Physical Quantities and Units of Electrical Engineering 56
Physical Quantities and Units of Lighting Engineering 57
Different Measuring Units of Temperature 57
Measures of Length and Square Measures 58
Cubic Measures and Weights 59
Energy, Work, Quantity of Heat 59
Power, Energy Flow, Heat Flow 60
Pressure and Tension 60
Velocity 60
Equations for Linear Motion and Rotary Motion 61

Physics

Internationally Determined Prefixes

Basic SI Units

Internationally determined prefixes					
Decimal multiples and sub-multiples of units are represented with prefixes and symbols. Prefixes and symbols are used only in combination with unit names and unit symbols.					
Factor by which the unit is multiplied	Prefix	Symbol	Factor by which the unit is multiplied	Prefix	Symbol
10^{-18}	Atto	a	10^{1}	Deka	da
10-15	Femto	f	10^{2}	Hecto	h
10^{-12}	Pico	p	10^{3}	Kilo	k
10-9	Nano	n	10^{6}	Mega	M
10^{-6}	Micro	μ	10^{9}	Giga	G
10^{-3}	Milli	m	10^{12}	Tera	T
10^{-2}	Centi	c	10^{15}	Peta	P
10^{-1}	Deci	d	10^{18}	Exa	E

- Prefix symbols and unit symbols are written - When giving sizes by using prefix symbols and without blanks and together they form the unit symbols, the prefixes should be chosen in symbol for a new unit. An exponent on the unit symbol also applies to the prefix symbol.

$$
\begin{aligned}
& \text { Example: } \\
& 1 \mathrm{~cm}^{3}=1 \cdot\left(10^{-2} \mathrm{~m}\right)^{3}=1 \cdot 10^{-6} \mathrm{~m}^{3} \\
& 1 \mu \mathrm{~s}=1 \cdot 10^{-6} \mathrm{~s} \\
& 10^{6} \mathrm{~s}^{-1}=10^{6} \mathrm{~Hz}=1 \mathrm{MHz} \\
& \text { - Prefixes are not used with the basic SI unit kilo- } \\
& \text { gram (kg) but with the unit gram (g). } \\
& \text { Example: } \\
& \text { Milligram (mg), NOT microkilogram (} \mu \mathrm{kg} \text {). }
\end{aligned}
$$

Basic SI units					
Physical quantity	Basic SI unit		Physical quantity	Basic SI unit	
	Name	Symbol		Name	Symbol
Length	Metre	m			
Mass	Kilogram	kg	temperature	Kelvin	K
Time	Second	s	Amount of substance	Mole	mol
Electric current	Ampere	A	Luminous intensity	Candela	cd

Physics

Derived SI Units
Legal Units Outside the SI

Derived SI units having special names and special unit symbols			
Physical quantity	SI unit		Relation
	Name	Symbol	
Plane angle	Radian	rad	$1 \mathrm{rad}=1 \mathrm{~m} / \mathrm{m}$
Solid angle	Steradian	Sr	$1 \mathrm{sr}=1 \mathrm{~m}^{2} / \mathrm{m}^{2}$
Frequency, cycles per second	Hertz	Hz	$1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}$
Force	Newton	N	$1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$
Pressure, mechanical stress	Pascal	Pa	$1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}=1 \mathrm{~kg} /\left(\mathrm{m} \cdot \mathrm{s}^{2}\right)$
Energy; work; quantity of heat	Joule	J	$1 \mathrm{~J}=1 \mathrm{~N} \cdot \mathrm{~m}=1 \mathrm{~W} \cdot \mathrm{~s}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{m}^{2}$
Power, heat flow	Watt	W	$1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{3}$
Electric charge	Coulomb	C	$1 \mathrm{C}=1 \mathrm{~A} \cdot \mathrm{~s}$
Electric potential	Volt	V	$1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C}=1\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right) /\left(\mathrm{A} \cdot \mathrm{s}^{3}\right)$
Electric capacitance	Farad	F	$1 \mathrm{~F}=1 \mathrm{C} / \mathrm{V}=1\left(\mathrm{~A}^{2} \cdot \mathrm{~s}^{4}\right) /\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$
Electric resistance	Ohm	Ω	$\left.1 \Omega=1 \mathrm{~V} / \mathrm{A}=1\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right) / \mathrm{A}^{2} \cdot \mathrm{~s}^{3}\right)$
Electric conductance	Siemens	S	$1 \mathrm{~S}=1 \mathrm{~S}^{-1}=1\left(\mathrm{~A}^{2} \cdot \mathrm{~s}^{3}\right) /\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$
Celsius temperature	degrees Celsius	${ }^{\circ} \mathrm{C}$	$1{ }^{\circ} \mathrm{C}=1 \mathrm{~K}$
Inductance	Henry	H	$1 \mathrm{H}=1 \mathrm{~V} \cdot \mathrm{~s} / \mathrm{A}$

Legal units outside the SI			
Physical quantity	Unit name	Unit symbol	Definition
Plane angle	Round angle Gon Degree Minute Second	$\begin{array}{ll} & \begin{array}{l} \text { 1) } \\ \text { gon } \\ \hline \end{array} \\ & 2) \\ " & 2) \\ 2) \end{array}$	$\begin{gathered} 1 \text { perigon }=2 \pi \mathrm{rad} \\ 1 \text { gon }=(\pi / 200) \mathrm{rad} \\ 1^{\circ}=(\pi / 180) \mathrm{rad} \\ 1^{\prime}=(1 / 60)^{\circ} \\ 1^{\prime \prime}=(1 / 60)^{\prime} \end{gathered}$
Volume	Litre	1	$1 \mathrm{I}=1 \mathrm{dm}^{3}=(1 / 1000) \mathrm{m}^{3}$
Time	Minute Hour Day Year	$\begin{array}{ll} \min & 2) \\ \mathrm{h} & 2) \\ \mathrm{d} & 2) \\ \mathrm{a} & 2) \end{array}$	$\begin{gathered} 1 \mathrm{~min}=60 \mathrm{~s} \\ 1 \mathrm{~h}=60 \mathrm{~min}=3600 \mathrm{~s} \\ 1 \mathrm{~d}=24 \mathrm{~h}=86400 \mathrm{~s} \\ 1 \mathrm{a}=365 \mathrm{~d}=8760 \mathrm{~h} \end{gathered}$
Mass	Ton	t	$1 \mathrm{t}=10^{3} \mathrm{~kg}=1 \mathrm{Mg}$
Pressure	Bar	bar	$1 \mathrm{bar}=10^{5} \mathrm{~Pa}$

1) A symbol for the round angle has not yet been internationally determined
2) Do not use with prefixes

Physics

Physical Quantities and Units of
Lengths and Their Powers

Physical quantities and units of lengths and their powers			
Symbol	Physical quantity	SI unit Symbol Name	N.: Note L.U.: Further legal units N.A.: Units no longer allowed
1	Length	$\underset{\text { (metre) }}{\mathrm{m}}$	N.: Basic unit L.U.: $\mu \mathrm{m} ; \mathrm{mm} ; \mathrm{cm} ; \mathrm{dm} ; \mathrm{km}$; etc. N.A.: micron $(\mu): 1 \mu=1 \mu \mathrm{~m}$ Ångström unit (\AA): $1 \AA=10^{-10} \mathrm{~m}$
A	Area	m^{2} (square metre)	$\begin{aligned} & \text { L.U.: } \mathrm{mm}^{2} ; \mathrm{cm}^{2} ; \mathrm{dm}^{2} ; \mathrm{km}^{2} \\ & \text { are (a): } 1 \mathrm{a}=10^{2} \mathrm{~m}^{2} \\ & \text { hectare (ha): } 1 \text { ha }=10^{4} \mathrm{~m}^{2} \end{aligned}$
V	Volume	$\begin{gathered} \mathrm{m}^{3} \\ \text { (cubic metre) } \end{gathered}$	$\text { L.U.: } \begin{aligned} & \mathrm{mm}^{3} ; \mathrm{cm}^{3} ; \mathrm{dm}^{3} \\ & \text { litre }(\mathrm{I}): 1 \mathrm{I}=\mathrm{dm}^{3} \end{aligned}$
H	Moment of area	m^{3}	N.: moment of a force; moment of resistance L.U.: $\mathrm{mm}^{3} ; \mathrm{cm}^{3}$
I	Second moment of area	m^{4}	N.: formerly: geometrical moment of inertia L.U.: $\mathrm{mm}^{4} ; \mathrm{cm}^{4}$
$\alpha, \beta . \gamma$	Plane angle	$\begin{gathered} \text { rad } \\ (\text { radian }) \end{gathered}$	$\mathrm{N} .: 1 \mathrm{rad}+\frac{1 \mathrm{~m}(\operatorname{arc})}{1 \mathrm{~m}(\text { radius })}+\frac{1 \mathrm{~m}}{1 \mathrm{~m}}+1 \mathrm{~m} \mathrm{~m}$ L.U. : urad, mrad $\begin{aligned} & \text { Degree }\left({ }^{\circ}\right): 1^{0}+\frac{\pi}{180} \mathrm{rad} \\ & \text { Minute () : } 1+\frac{1^{\circ}}{60} \\ & \text { Second () : } 1+\frac{1}{60} \\ & \text { Gon (gon) }: 1 \text { gon }+\frac{\pi}{200} \mathrm{rad} \end{aligned}$ N.A. : Right angle $=(\mathrm{L}): 1 \mathrm{~L}+\frac{\pi}{2} \mathrm{rad}$ Centesimal degree (g): $1 \mathrm{~g}+1 \mathrm{gon}$ Centesimal minute $\left({ }^{c}\right): 1^{c}+\frac{1}{100}$ gon Centesimal second (${ }^{\mathrm{cc}}$) : $1^{\mathrm{cc}}+\frac{1^{c}}{100}$
Ω, ω	Solid angle	$\begin{gathered} \mathrm{sr} \\ \text { (steradian) } \end{gathered}$	$\mathrm{N} .: 1 \mathrm{sr}+\frac{1 \mathrm{~m}^{2} \text { (spherical surface) }}{1 \mathrm{~m}^{2} \text { (square of spherical radius) }}+1 \frac{\mathrm{~m}^{2}}{\mathrm{~m}^{2}}$

Physics

Physical Quantities and Units
of Time and of Mechanics

| Physical quantities and units of time | | | |
| :---: | :---: | :---: | :--- | :--- |
| Symbol | $\begin{array}{c}\text { Physical } \\ \text { quantity }\end{array}$ | $\begin{array}{c}\text { SI unit } \\ \text { Symbol } \\ \text { Name }\end{array}$ | $\begin{array}{l}\text { N.: } \\ \text { L.U.: }\end{array}$ |
| Note | | | |
| N.A.: Unther legal units no longer allowed | | | |$]$

Physical quantities and units of mechanics			
Symbol	Physical quantity	SI unit Symbol Name	N.: Note L.U.: Further legal units N.A.: Units no longer allowed
m	Mass	$\begin{gathered} \mathrm{kg} \\ \text { (kilogram) } \end{gathered}$	N.: Basic unit L.U.: $\mu \mathrm{g} ; \mathrm{mg} ; \mathrm{g} ; \mathrm{Mg}$ ton $(\mathrm{t}): 1 \mathrm{t}=1000 \mathrm{~kg}$
m'	Mass per unit length	kg/m	N.: $\quad m^{\prime}=m / l$ L.U.: mg/m; g/km; In the textile industry: Tex (tex): 1 tex $=10^{-6} \mathrm{~kg} / \mathrm{m}=1 \mathrm{~g} / \mathrm{km}$
m"	Mass in relation to the surface	$\mathrm{kg} / \mathrm{m}^{2}$	N.: $\quad m^{\prime \prime}=m / A$ L.U.: $\mathrm{g} / \mathrm{mm}^{2} ; \mathrm{g} / \mathrm{m}^{2} ; \mathrm{t} / \mathrm{m}^{2}$
@	Density	$\mathrm{kg} / \mathrm{m}^{3}$	$\begin{aligned} \text { N.: } \quad & \varrho=\mathrm{m} / \mathrm{V} \\ \text { L.U.: } & \mathrm{g} / \mathrm{cm}^{3}, \mathrm{~kg} / \mathrm{dm}^{3}, \mathrm{Mg} / \mathrm{m}^{3}, \mathrm{t} / \mathrm{m}^{3}, \mathrm{~kg} / \mathrm{l} \\ & 1 \mathrm{~g} / \mathrm{cm}^{3}=1 \mathrm{~kg} / \mathrm{dm}^{3}=1 \mathrm{Mg} / \mathrm{m}^{3}= \\ & 1 \mathrm{t} / \mathrm{m}^{3}=1 \mathrm{~kg} / \mathrm{l} \end{aligned}$

Physics

Physical Quantities and
Units of Mechanics

Physical quantities and units of mechanics (continued)			
Symbol	Physical quantity	SI unit Symbol Name	N.: Note L.U.: Further legal units N.A.: Units no longer allowed
J	Mass moment of inertia; second mass moment	$\mathrm{kg} \cdot \mathrm{m}^{2}$	N.: Instead of the former flywheel effect GD ${ }^{2}$ $\begin{aligned} & \mathrm{GD}^{2} \text { in } \mathrm{kpm}^{2} \text { now : } \mathrm{J}+\frac{\mathrm{GD}^{2}}{4} \\ & \text { L.U.: } \mathrm{g} \cdot \mathrm{~m}^{2} ; \mathrm{t} \cdot \mathrm{~m}^{2} \end{aligned}$
m	Rate of mass flow	kg/s	L.U.: kg / h; t/h
F	Force	N (Newton)	L.U.: $\mu \mathrm{N} ; \mathrm{mN} ; \mathrm{kN} ; \mathrm{MN}$; etc.; $1 \mathrm{~N}=1 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}$ N.A.: $\mathrm{kp}(1 \mathrm{kp}=9.80665 \mathrm{~N})$
G	Weight	N (Newton)	N.: Weight = mass acceleration due to gravity L.U.: kN; MN; GN; etc.
M, T	Torque	Nm	L.U.: $\mu \mathrm{Nm} ; \mathrm{mNm} ; \mathrm{kNm}$; MNm; etc. N.A.: kpm; pcm; pmm; etc.
M_{b}	Bending moment	Nm	L.U.: Nmm; Ncm; kNm etc. N.A.: kpm; kpcm; kpmm etc.
p	Pressure	Pa (Pascal)	N .: $1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}$ L.U.: Bar (bar): $1 \mathrm{bar}=100000 \mathrm{~Pa}=10^{5} \mathrm{~Pa}$ $\mu \mathrm{bar}, \mathrm{mbar}$ N.A.: kp/cm²; at; ata; atü; mmWS; mmHg; Torr $1 \mathrm{kp} / \mathrm{cm}^{2}=1$ at $=0.980665$ bar $1 \mathrm{~atm}=101325 \mathrm{~Pa}=1.01325 \mathrm{bar}$ 1 Torr $+\frac{101325}{760} \mathrm{~Pa}+133.322 \mathrm{~Pa}$ $1 \mathrm{mWS}=9806.65 \mathrm{~Pa}=9806.65 \mathrm{~N} / \mathrm{m}^{2}$ $1 \mathrm{mmHg}=133.322 \mathrm{~Pa}=133.322 \mathrm{~N} / \mathrm{m}^{2}$
$\mathrm{p}_{\text {abs }}$	Absolute pressure	Pa (Pascal)	
Pamb	Ambient atmospheric pressure	Pa (Pascal)	
p_{e}	Pressure above atmospheric	Pa (Pascal)	$\mathrm{p}_{\mathrm{e}}=\mathrm{p}_{\text {abs }}-\mathrm{p}_{\text {amb }}$
σ	Direct stress (tensile and compressive stress)	$\mathrm{N} / \mathrm{m}^{2}$	$\begin{aligned} \text { L.U.: } & \mathrm{N} / \mathrm{mm}^{2} \\ & 1 \mathrm{~N} / \mathrm{mm}^{2}=10^{6} \mathrm{~N} / \mathrm{m}^{2} \end{aligned}$
τ	Shearing stress	$\mathrm{N} / \mathrm{m}^{2}$	L.U.: $\mathrm{N} / \mathrm{mm}^{2}$
ε	Extension	m / m	N.: $\Delta l / l$ L.U.: $\mu \mathrm{m} / \mathrm{m} ; \mathrm{cm} / \mathrm{m} ; \mathrm{mm} / \mathrm{m}$
W, A E, W	Work Energy	$\underset{\text { (Joule) }}{\text { J }}$	N.: $\quad 1 \mathrm{~J}=1 \mathrm{Nm}=1 \mathrm{Ws}$ L.U.: mJ; kJ; MJ; GJ; TJ; kWh $1 \mathrm{kWh}=3.6 \mathrm{MJ}$ N.A.: kpm; cal; kcal $1 \mathrm{cal}=4.1868 \mathrm{~J} ; 860 \mathrm{kcal}=1 \mathrm{kWh}$

Physics

Physical Quantities and Units of Mechanics,
Thermodynamics and Heat Transfer

Physical quantities and units of mechanics (continued)			
Symbol	Physical quantity	$\begin{aligned} & \text { SI unit } \\ & \text { Symbol } \\ & \text { Name } \end{aligned}$	N.: Note L.U.: Further legal units N.A.: Units no longer allowed
P	Power	W Watt)	$\mathrm{N} .: 1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}=1 \mathrm{Nm} / \mathrm{s}$ L.U.: $\mu \mathrm{W}$; mW; kW; MW; etc. $\mathrm{kJ} / \mathrm{s} ; \mathrm{kJ} / \mathrm{h} ; \mathrm{MJ} / \mathrm{h}$, etc. N.A.: PS; kpm/s; kcal/h $\begin{aligned} & 1 \mathrm{PS}=735.49875 \mathrm{~W} \\ & 1 \mathrm{kpm} / \mathrm{s}=9.81 \mathrm{~W} \\ & 1 \mathrm{kcal} / \mathrm{h}=1.16 \mathrm{~W} \\ & 1 \mathrm{hp}=745.70 \mathrm{~W} \end{aligned}$
Q	Heat flow		
η	Dynamic viscosity	$\mathrm{Pa} \cdot \mathrm{s}$	$\mathrm{N} .: 1 \mathrm{~Pa} \cdot \mathrm{~s}=1 \mathrm{Ns} / \mathrm{m}^{2}$ L.U.: $\mathrm{dPa} \cdot \mathrm{s}, \mathrm{mPa} \cdot \mathrm{s}$ N.A.: Poise (P): $1 \mathrm{P}=0.1 \mathrm{~Pa} \cdot \mathrm{~s}$
v	Kinematic viscosity	$\mathrm{m}^{2} / \mathrm{s}$	$\begin{aligned} & \text { L.U.: } \mathrm{mm}^{2} / \mathrm{s} ; \mathrm{cm}^{2} / \mathrm{s} \\ & \text { N.A.: } S t o k e s(\mathrm{St}): \\ & 1 \mathrm{St}=1 / 10000 \mathrm{~m}^{2} / \mathrm{s} \\ & \\ & 1 \mathrm{cSt}=1 \mathrm{~mm}^{2} / \mathrm{s} \end{aligned}$

Physical quantities and units of thermodynamics and heat transfer			
Symbol	Physical quantity	SI unit Symbol Name	N.: Note L.U.: Further legal units N.A.: Units no longer allowed
T	Thermodynamic temperature	$\begin{gathered} \text { K } \\ \text { (Kelvin) } \end{gathered}$	N.: Basic unit 273.15 K = $0^{\circ} \mathrm{C}$ $373.15 \mathrm{~K}=100^{\circ} \mathrm{C}$ L.U.: mK
t	Celsius temperature	${ }^{\circ} \mathrm{C}$	N. : \quad The degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ is a special name for the degrees Kelvin (K) when stating Celsius temperatures. The temperature interval of 1 K equals that of $1^{\circ} \mathrm{C}$.
Q	Heat Quantity of heat	J	$1 \mathrm{~J}=1 \mathrm{Nm}=1 \mathrm{Ws}$ L.U.: mJ; kJ; MJ; GJ; TJ N.A.: cal; kcal
a	Temperature conductivity	$\mathrm{m}^{2} / \mathrm{s}$	$\begin{array}{ll} a+\overline{\mu=c_{p}} & \\ \lambda[\mathrm{~W} /(\mathrm{m} \cdot \mathrm{~K})]= & \text { thermal conductivity } \\ \mu\left[\mathrm{kg} / \mathrm{m}^{3}\right] & =\text { density of the body } \\ \mathrm{c}_{\mathrm{p}}[\mathrm{~J} /(\mathrm{kg} \cdot \mathrm{~K})] & =\begin{array}{l} \text { specific heat capacity } \\ \\ \end{array} \\ & \text { at constant pressure } \end{array}$
H	Enthalpy (Heat content)	J	N.: Quantity of heat absorbed under certain conditions L.U.: kJ; MJ; etc. N.A.: kcal; Mcal; etc.
s	Entropy	J/K	$1 \mathrm{~J} / \mathrm{K}=1 \mathrm{Ws} / \mathrm{K}=1 \mathrm{Nm} / \mathrm{K}$ L.U.: kJ/K N.A.: kcal/deg; kcal/ ${ }^{\circ} \mathrm{K}$
α, h	Heat transfer coefficient	$\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)$	L.U.: W/(cm $\left.{ }^{2} \cdot \mathrm{~K}\right) ; \mathrm{kJ} /\left(\mathrm{m}^{2} \cdot \mathrm{~h} \cdot \mathrm{~K}\right)$ N.A.: cal/(cm $\left.{ }^{2} \cdot \mathrm{~s} \cdot \mathrm{grd}\right)$ $\mathrm{kal} /\left(\mathrm{m}^{2} \cdot \mathrm{~h} \cdot \mathrm{grd}\right) \approx 4.2 \mathrm{~kJ} /\left(\mathrm{m}^{2} \cdot \mathrm{~h} \cdot \mathrm{~K}\right)$

Physics

Physical Quantities and Units of Thermodynamics,
Heat Transfer and Electrical Engineering

Physical quantities and units of thermodynamics and heat transfer (continued)			
Symbol	Physical quantity	SI unit Symbol Name	N.: Note L.U.: Further legal units N.A.: Units no longer allowed
c	Specific heat capacity	$\mathrm{J} /(\mathrm{K} \cdot \mathrm{kg})$	$1 \mathrm{~J} /(\mathrm{K} \cdot \mathrm{kg})=\mathrm{W} \cdot \mathrm{s} /(\mathrm{kg} \cdot \mathrm{K})$ N.: Heat capacity referred to mass N.A.: cal / (g • deg); kcal / (kg • deg); etc.
α_{1}	Coefficient of linear thermal expansion	K^{-1}	$\mathrm{N} \quad \mathrm{m} /(\mathrm{m} \cdot \mathrm{K})=\mathrm{K}^{-1}$ N.: Temperature unit/length unit ratio L.U.: $\mu \mathrm{m} /(\mathrm{m} \cdot \mathrm{K}) ; \mathrm{cm} /(\mathrm{m} \cdot \mathrm{K}) ; \mathrm{mm} /(\mathrm{m} \cdot \mathrm{K})$
α_{v}, γ	Coefficient of volumetric expansion	K^{-1}	$\mathrm{N}: \quad \mathrm{m}^{3} /\left(\mathrm{m}^{3} \cdot \mathrm{~K}\right)=\mathrm{K}^{-1}$ N.: Temperature unit/volume ratio N.A.: $\mathrm{m}^{3} /\left(\mathrm{m}^{3} \cdot \mathrm{deg}\right)$

Physical quantities and units of electrical engineering			
Symbol	Physical quantity	SI unit Symbol Name	N.: Note L.U.: Further legal units N.A.: Units no longer allowed
I	Current strength	A (Ampere)	N.: Basic unit L.U.: $\mathrm{pA} ; \mathrm{nA} ; \mu \mathrm{A} ; \mathrm{mA}$; $k A$; etc.
Q	Electriccharge; Quantity of electricity	C (Coloumb)	$\begin{gathered} 1 \mathrm{C}=1 \mathrm{~A} \cdot \mathrm{~s} \\ \\ 1 \mathrm{Ah}=3600 \mathrm{As} \\ \text { L.U.: } \mathrm{pC} ; \mathrm{nC} ; \mu \mathrm{C} ; \mathrm{kC} \end{gathered}$
U	Electric voltage	$\begin{gathered} \text { V } \\ (\text { Volt }) \end{gathered}$	$\begin{array}{ll} & 1 \mathrm{~V}=1 \mathrm{~W} / \mathrm{A}=1 \mathrm{~J} /(\mathrm{s} \cdot \mathrm{~A}) \\ & =1 \mathrm{~A} \cdot \Omega=1 \mathrm{~N} \cdot \mathrm{~m} /(\mathrm{s} \cdot \mathrm{~A}) \\ \text { L.U.: } & \mu \mathrm{V} ; \mathrm{mV} ; \mathrm{kV} ; \mathrm{MV} ; \mathrm{etc} . \end{array}$
R	Electric resistance	$\begin{gathered} \Omega \\ (\mathrm{Ohm}) \end{gathered}$	$\begin{array}{ll} & 1 \Omega=1 \mathrm{~V} / \mathrm{A}=1 \mathrm{~W} / \mathrm{A}^{2} \\ & 1 \mathrm{~J} /\left(\mathrm{s} \cdot \mathrm{~A}^{2}\right)=1 \mathrm{~N} \cdot \mathrm{~m} /\left(\mathrm{s} \cdot \mathrm{~A}^{2}\right) \\ \text { L.U.: } \mu \Omega ; \mathrm{m} \Omega ; \mathrm{k} \Omega ; \text { etc. } \end{array}$
G	Electric conductance	S (Siemens)	N.: Reciprocal of electric resistance $1 S=1 \Omega^{-1}=1 / \Omega ; G=1 / R$ L.U.: $\mu \mathrm{S}$; mS; kS
C	Electrostatic capacitance	$\begin{gathered} \text { F } \\ \text { (Farad) } \end{gathered}$	$\begin{array}{ll} & 1 \mathrm{~F}=1 \mathrm{C} / \mathrm{V}=1 \mathrm{~A} \cdot \mathrm{~s} / \mathrm{V} \\ & =1 \mathrm{~A}^{2} \cdot \mathrm{~s} / \mathrm{W}=1 \mathrm{~A}^{2} \cdot \mathrm{~s}^{2} / \mathrm{J} \\ & =1 \mathrm{~A}^{2} \cdot \mathrm{~s}^{2} /(\mathrm{N} \cdot \mathrm{~m}) \\ \text { L.U.: } & \mathrm{pF} ; \mu \mathrm{F} ; \text { etc. } \end{array}$

Physics

Physical Quantities and Units of Lighting Engineering,
Different Measuring Units of Temperature

Different measuring units of temperature			
$\begin{gathered} \text { Kelvin } K \\ T_{K} \end{gathered}$	Degrees Celsius ${ }^{\circ} \mathrm{C}$ t_{C}	Degrees Fahrenheit ${ }^{\circ} \mathrm{F}$ t_{F}	Degrees Rankine ${ }^{\circ} \mathrm{R}$ T_{R}
$\mathrm{T}_{\mathrm{K}} \quad 273.15+\mathrm{t}_{\mathrm{c}}$	$\mathrm{t}_{\mathrm{C}} \quad \mathrm{T}_{\mathrm{K}}=273.15$	$\mathrm{t}_{\mathrm{F}} \quad \frac{9}{5} \quad \mathrm{~T}_{\mathrm{K}}=459.67$	$\mathrm{T}_{\mathrm{R}} \quad \frac{9}{5} \mathrm{~T}_{\mathrm{K}}$
$\mathrm{T}_{\mathrm{K}} \quad 255.38+\frac{5}{9} \quad \mathrm{t}_{\mathrm{F}}$	$\mathrm{t}_{\mathrm{C}} \quad \frac{5}{9} \mathrm{t}_{\mathrm{F}}=32$	$\mathrm{t}_{\mathrm{F}} \quad 32+\frac{9}{5} \quad \mathrm{t}_{\mathrm{c}}$	$\mathrm{T}_{\mathrm{R}} \quad \frac{9}{5} \quad \mathrm{t}_{\mathrm{c}}+273.15$
$\mathrm{T}_{\mathrm{K}} \quad \frac{5}{9} \mathrm{~T}_{\mathrm{R}}$	$\mathrm{t}_{\mathrm{C}} \quad \frac{5}{9} \mathrm{~T}_{\mathrm{R}}=273.15$	$\mathrm{t}_{\mathrm{F}} \quad \mathrm{T}_{\mathrm{R}}=459.67$	$\mathrm{T}_{\mathrm{R}} \quad 459.67+\mathrm{t}_{\mathrm{F}}$

Comparison of some temperatures				
0.00	-273.15	-459.67	0.00	
+255.37	-17.78	0.00	+459.67	
+273.15	0.00	+32.00	+491.67	
+273.16	$1)$	0.01	$1)$	
+373.15	+100.00	+32.02	+491.69	

1) The triple point of water is $+0.01^{\circ} \mathrm{C}$. The triple point of pure water is the equilibrium point between pure ice, air-free water and water vapour (at 1013.25 hPa).

Physics

Measures of Length
and Square Measures

Measures of length								
Unit	inch ${ }_{\text {in }}^{\text {a }}$	Foot ft	$\begin{aligned} & \text { Yard } \\ & \text { yd } \end{aligned}$	Stat mile	Naut mile	mm	m	km
	($\begin{gathered}1 \\ 12 \\ 36 \\ 63360 \\ 72960\end{gathered}$	$\begin{gathered} 0.08333 \\ 13 \\ 3 \\ 5280 \\ 6080 \end{gathered}$	$\begin{gathered} 0.02778 \\ 0.3333 \\ 1760 \\ 2027 \end{gathered}$	${ }_{1.152}^{-}$		25.4 304.8 944.4	0.0254 0.3048 0.9144 16094 1853.2	- - 1.609 1.853
$\begin{aligned} 1 \mathrm{~mm} & = \\ 1 \mathrm{~m} & = \\ 1 \mathrm{~km} & = \end{aligned}$	$\begin{gathered} 0.03937 \\ 39.37 \\ 39370 \end{gathered}$	$\begin{aligned} & 3.281 \cdot 10^{-3} \\ & 3.281 \\ & 3281 \end{aligned}$	$\begin{aligned} & 1.094 \cdot 10^{-3} \\ & 1.094 \\ & 1094 \end{aligned}$	$\stackrel{-}{0.6214}$	$\stackrel{-}{0.5396}$	1 1000 106	$\begin{gathered} 0.001 \\ 1 \\ 1000 \end{gathered}$	$10-6$ 0.001 1
1 German statute mile $=7500 \mathrm{~m}$ 1 geograph. mile $=7420.4 \mathrm{~m}=4$ arc minutes at the equator (1° at the equator $=111.307 \mathrm{~km}$)				Astronomical units of measure 1 light-second = 300000 km 1 l.y. (light-year) $=9.46 \cdot 10^{12} \mathrm{~km}$ 1 parsec (parallax second, distances to the stars) = 3.26 I.y. 1 astronomical unit (mean distance of the earth from the sun) $=1.496 \cdot 10^{8} \mathrm{~km}$ Typographical unit of measure: 1 point $(p)=0.376 \mathrm{~mm}$				
$\left.\begin{array}{l}\text { 1 internat. nautical mile } \\ 1 \text { German nautical mile } \\ \text { (sm) } \\ 1 \text { mille marin (French) }\end{array}\right\}$$=1852 \mathrm{~m}=1$ arc minute at the degree of longititude $(1)^{\circ}$ at the me- ridian $=111.121 \mathrm{~km})$								
$\begin{aligned} & \text { Other measures of length of the Imperial system } \\ & 1 \text { micro-in }=10^{-6} \mathrm{in}=0.0254 \mu \mathrm{~m} \\ & 1 \text { mil }=1 \text { thou }=0.001 \mathrm{in}=0.0254 \mathrm{~mm} \\ & 1 \text { line }=0.1 \text { in }=2,54 \mathrm{~mm} \\ & 1 \text { fathom }=2 \mathrm{yd}=1.829 \mathrm{~m} \\ & 1 \text { engineer's chain }=100 \text { eng link }=100 \mathrm{ft}=30.48 \mathrm{~m} \\ & 1 \text { rod }=1 \text { perch }=1 \text { pole }=25 \text { surv link }=5.029 \mathrm{~m} \\ & 1 \text { surveyor's chain }=100 \text { surv link }=20.12 \mathrm{~m} \\ & 1 \text { furlong }=1000 \text { surv link }=201.2 \mathrm{~m} \\ & 1 \text { stat league }=3 \text { stat miles }=4.828 \mathrm{~km} \end{aligned}$				Other measures of length of the metric system France:				

Square measure										
Unit	sq	sq	$\begin{gathered} \text { sq } \\ \text { yd } \end{gathered}$	$\begin{gathered} \text { squ } \\ \text { mile } \end{gathered}$	cm^{2}	dm^{2}	m^{2}	a	ha	km²
$\begin{aligned} & 1 \text { square inch } \\ & 1 \\ & 1 \\ & 1 \text { square foot } \\ & 1 \\ & 1 \text { square yard } \\ & 1 \text { square mile } \end{aligned}$	$\begin{gathered} 1 \\ \hline 144 \\ 1296 \end{gathered}$	9	${\underset{1}{0.1111}}_{-\quad}$	$\begin{aligned} & - \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \hline 6.452 \\ 929 \\ 8361 \end{array}$	$\begin{gathered} 0.06452 \\ \hline 9.29 \\ 83.61 \end{gathered}$	$\begin{aligned} & -\quad- \\ & 0.0929 \\ & 0.8361 \end{aligned}$	-	$\begin{gathered} - \\ - \\ 259 \end{gathered}$	2.59
$\begin{aligned} 1 \mathrm{~cm}^{2} & = \\ 1 \mathrm{~cm}^{2} & = \\ 1 \mathrm{~m}^{2} & = \\ 1 \mathrm{a} & = \\ 1 \mathrm{ha}^{\text {a }} & = \\ 1 \mathrm{~km}^{2} & =\end{aligned}$	0.155 15.5 1550 -	0.1076 1076 1076	$\xrightarrow{0.001196}$	$\begin{gathered} - \\ - \\ - \\ 0.3861 \end{gathered}$	$\begin{gathered} 1 \\ 100 \\ 10000 \end{gathered}$	0.01 1 100 10000 -	$\begin{gathered} - \\ 0.01 \\ 1 \\ 100 \\ 10000 \\ - \end{gathered}$	- - 0.01 1 100 10000	- - 0.01 1 100	$\stackrel{0.01}{1}$
```Other square measures of the Imperial system 1 sq mil \(=1 \cdot 10^{-6} \mathrm{sq}\) in \(=0.0006452 \mathrm{~mm}^{2}\) 1 sq line \(=0.01 \mathrm{sq}\) in \(=6.452 \mathrm{~mm}^{2}\) 1 sq surveyor's link \(=0.04047 \mathrm{~m}_{2}\) 1 sq rod \(=1\) sq perch \(=1\) sq pole \(=625\) sq surv link \(=25.29 \mathrm{~m}^{2}\) 1 sq chain \(=16 \mathrm{sq} \mathrm{rod}=4.047 \mathrm{a}\) 1 acre \(=4 \operatorname{rood}=40.47 \mathrm{a}\) 1 township (US) \(=36\) sq miles \(=3.24 \mathrm{~km}^{2}\) 1 circular in \(=\frac{\pi}{4}\) sq in \(=5.067 \mathrm{~cm}^{2}\) (circular area with 1 in dia.) 1 circular mil \(=\frac{\pi}{4}\) sq mil \(=0.0005067 \mathrm{~mm}^{2}\) ccircular area with 1 mil dia.)```						Other   systen   Russi 1 kwad 1 kwa 1 kwad Japan 1 tsub 1 se 1 ho-ri	quare me   archin   saschen   atine   werst		he met   5058 m 522 m . 925 ha 38 km ${ }^{2}$   $06 \mathrm{~m}^{2}$ 917a 42 km ${ }^{2}$	

## Physics

Cubic Measures and Weights;
Energy, Work, Quantity of Heat

Cubic measures									
Unit	$\begin{aligned} & \text { cu } \\ & \text { in } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{cu} \\ & \mathrm{ft} \end{aligned}$	$\begin{array}{\|c\|} \hline \text { US liquid } \\ \text { quart } \\ \hline \end{array}$	$\begin{gathered} \text { US } \\ \text { gallon } \end{gathered}$	Imp quart	$\begin{gathered} \text { Imp } \\ \text { gallon } \end{gathered}$	$\mathrm{cm}^{3}$	$\begin{gathered} \mathrm{dm}^{3} \\ (\mathrm{I}) \\ \hline \end{gathered}$	$\mathrm{m}^{3}$
1 cu in 1 cuft 1 cu yd	$\begin{gathered} 1 \\ 1728 \\ 46656 \end{gathered}$	$\begin{gathered} \overline{1} \\ 27 \end{gathered}$	$\begin{gathered} \hline 0.01732 \\ 29.92 \\ 807.9 \end{gathered}$	$\begin{gathered} 7.481 \\ 202 \end{gathered}$	$\begin{aligned} & \hline 0.01442 \\ & 24.92 \\ & 672.8 \end{aligned}$	$\begin{aligned} & 6.229 \\ & 168.2 \end{aligned}$	$16.39$	$\begin{gathered} 0.01639 \\ 28.32 \\ 764.6 \end{gathered}$	$\begin{gathered} - \\ 0.02832 \\ 0.7646 \end{gathered}$
$\begin{aligned} 1 \text { US liquid quart } & = \\ 1 \text { US gallon } & = \end{aligned}$	$\begin{gathered} 57.75 \\ 231 \end{gathered}$	$\begin{gathered} 0.03342 \\ 0.1337 \end{gathered}$	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	$\begin{gathered} 0.25 \\ 1 \end{gathered}$	$\begin{gathered} 0.8326 \\ 3.331 \end{gathered}$	$\begin{aligned} & 0.2082 \\ & 0.8326 \end{aligned}$	$\begin{aligned} & 946.4 \\ & 3785 \end{aligned}$	$\begin{gathered} 0.9464 \\ 3.785 \end{gathered}$	-
$\begin{aligned} & 1 \mathrm{imp} \text { quart }= \\ & 1 \mathrm{imp} \text { gallon } \\ & = \end{aligned}$	$\begin{aligned} & 69.36 \\ & 277.4 \end{aligned}$	$\begin{gathered} 0.04014 \\ 0.1605 \end{gathered}$	$\begin{aligned} & 1.201 \\ & 4.804 \end{aligned}$	$\begin{aligned} & 0.3002 \\ & 1.201 \end{aligned}$	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	$\begin{gathered} 0.25 \\ 1 \end{gathered}$	$\begin{aligned} & 1136 \\ & 4546 \end{aligned}$	$\begin{aligned} & 1.136 \\ & 4.546 \end{aligned}$	-
$\begin{gathered} 1 \mathrm{~cm}^{3} \\ 1 \mathrm{dm}^{3}(\mathrm{l}) \\ 1 \mathrm{~m}^{3} \end{gathered}$	$\begin{gathered} 0.06102 \\ 61.02 \\ 61023 \end{gathered}$	$\begin{gathered} 0.03531 \\ 35.31 \end{gathered}$	$\begin{gathered} -\overline{7} \\ 1.057 \\ 1057 \end{gathered}$	$\begin{aligned} & 0 .-2642 \\ & 264.2 \end{aligned}$	$\begin{aligned} & -\overline{0} 8 \\ & 0.80 \\ & \hline \end{aligned}$	$\begin{aligned} & -\overline{2} 2 \\ & 0.22 \end{aligned}$	$\begin{gathered} 1 \\ 1000 \\ 10^{6} \end{gathered}$	$\begin{gathered} 0.001 \\ 1 \\ 1000 \end{gathered}$	$\begin{gathered} 10^{6} \\ 0.001 \\ 1 \end{gathered}$
1 US minim $=0.0616 \mathrm{~cm}^{3}$ (USA)   1 US fl dram $=60$ minims $=3.696 \mathrm{~cm}^{3}$   1 US floz $=8 \mathrm{fl}$ drams $=0,02957$ ।   1 US gill $=4 \mathrm{fl} \mathrm{oz}=0.1183 \mid$   1 US liquid pint $=4$ gills $=0.4732$ I   1 US liquid quart $=2$ liquid pints $=0.9464$ ।   1 US gallon $=4$ liquid quarts $=3.785 \mathrm{I}$   1 US dry pint $=0.55061$   1 US dry quart $=2$ dry pints $=1.101 \mathrm{I}$   1 US peck $=8$ dry quarts $=8.811$ I   1 US bushel $=4$ pecks $=35.24 \mathrm{I}$   1 US liquid barrel = 31.5 gallons $=119.21$   1 US barrel $=42$ gallons $=158.8$ I (for crude oil)   1 US cord $=128 \mathrm{cuft}=3.625 \mathrm{~m}^{2}$					1 Imp minim $=0.0592 \mathrm{~cm}^{3}(\mathrm{~GB})$   1 Imp ft drachm $=60$ minims $=3.552 \mathrm{~cm}^{3}$   $1 \mathrm{lmp} \mathrm{ft} \mathrm{oz}=8 \mathrm{ft}$ drachm $=0,02841 \mathrm{I}$   1 Imp gill $=5 \mathrm{ft} \mathrm{oz}=0.142 \mathrm{I}$   1 lmp pint $=4$ gills $=0.5682 \mathrm{I}$   1 Imp quart $=2$ pints $=1.1365 \mathrm{I}$   1 imp gallon $=4$ quarts $=4.5461 \mathrm{I}$   1 ilmp pottle $=2$ quarts $=2.273 \mathrm{I}$   1 Imp peck $=4$ pottles $=9.092 \mathrm{I}$   1 Imp bushel $=4$ pecks $=36.37 \mathrm{I}$   1 Imp quarter $=8$ bushels $=64$ gallons $=290.94 \mathrm{I}$				


Weights										
Unit	dram	oz	lb	short cwt	long cwt	short ton	long ton	g	kg	t
$\begin{gathered} 1 \text { dram } \\ 1 \mathrm{oz} \text { (ounze) } \\ 1 \mathrm{lb} \text { (pound) } \end{gathered}$	$\begin{gathered} 1 \\ 16 \\ 256 \end{gathered}$	$\begin{gathered} 0.0625 \\ 1 \\ 16 \end{gathered}$	$\begin{gathered} 0.003906 \\ 0.0625 \\ 1 \end{gathered}$	$\overline{0.01}$	$0.008929$	-	-	$\begin{aligned} & 1.772 \\ & 28.35 \\ & 453.6 \end{aligned}$	$\begin{array}{\|c} 0.00177 \\ 0.02835 \\ 0.4536 \end{array}$	-
1 short cwt (US) 1 long cwt (GB/US)	$\begin{aligned} & 25600 \\ & 28672 \end{aligned}$	$\begin{aligned} & 1600 \\ & 1792 \end{aligned}$	$\begin{aligned} & 100 \\ & 112 \end{aligned}$	$\begin{gathered} \hline 1 \\ 1.12 \end{gathered}$	$\begin{gathered} 0.8929 \\ \hline \end{gathered}$	$\begin{gathered} 0.05 \\ 0.056 \end{gathered}$	$\begin{gathered} 0.04464 \\ 0.05 \end{gathered}$	$\begin{aligned} & 45359 \\ & 50802 \end{aligned}$	$\begin{gathered} 45.36 \\ 50.8 \end{gathered}$	$\begin{gathered} 0.04536 \\ 0.0508 \end{gathered}$
$\begin{gathered} 1 \text { short ton (US) } \\ 1 \text { long ton (GB/US) } \end{gathered}$		$\begin{aligned} & 32000 \\ & 35840 \end{aligned}$	$\begin{aligned} & 2000 \\ & 2240 \end{aligned}$	$\begin{gathered} 20.4 \\ 22.4 \end{gathered}$	17.87 20	1.12	0.8929 1	-	$\begin{aligned} & 907.2 \\ & 1016 \end{aligned}$	$\begin{gathered} 0.9072 \\ 1.016 \end{gathered}$
$\begin{gathered} 1 \mathrm{~g} \\ 1 \mathrm{~kg} \\ 1 \mathrm{t} \end{gathered}$	$\begin{aligned} & 0.5643 \\ & 564.3 \end{aligned}$	$\begin{gathered} 0.03527 \\ 35.27 \\ 35270 \end{gathered}$	$\begin{gathered} 0.002205 \\ 2.205 \\ 2205 \end{gathered}$	$\begin{gathered} -\quad- \\ 0.02205 \\ 22.05 \end{gathered}$	$\begin{gathered} 0.01968 \\ 19.68 \end{gathered}$	1.102	$0.9842$	$\begin{gathered} 1 \\ 1000 \\ 10^{6} \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 1 \\ 1000 \end{gathered}$	$\begin{aligned} & 10^{-6} \\ & 0.001 \\ & 1 \end{aligned}$
1 grain $=1 / 7000 \mathrm{lb}=0.0648 \mathrm{~g}$ (GB)   1 stone $=14 \mathrm{l}=6.3 \mathrm{~kg}$ (GB)   1 short quarter $=1 / 4 \mathrm{short}$ cwt $=11.34 \mathrm{~kg}$ (USA)   1 long quarter $=1 / 4$ long cwt $=12.7 \mathrm{~kg}$ (GB $/$ USA)   1 1 quintal or 1 cental $=100 \mathrm{lb}=45.36 \mathrm{~kg}$ (USA)   1 quintal $=100$ lives $=48.95 \mathrm{~kg}$    1 kilopound $=1 \mathrm{kp}=1000 \mathrm{lb}=453.6 \mathrm{~kg}$ (F)					1 solotnik $=96$ dol $=4.2659 \mathrm{~g}$ (CIS)   1 lot $=3$ solotnik $=12.7978 \mathrm{~g}$ (CIS)   1 funt $=32$ lot $=0.409 \mathrm{~kg}$ (CIS)   1 pud $=40$ funt $=16.38 \mathrm{~kg}$ (CIS)   1 berkowetz $=163.8 \mathrm{~kg}$ (CIS)   $1 \mathrm{kwan}=100$ tael $=1000$ momme $=10000$ fun $=$    3.75 kg (J)    1 hyaku kin $=1$ picul $=16 \mathrm{kwan}=60 \mathrm{~kg}$ (J)    (J)					

Energy, work, quantity of heat


## Physics

Power, Energy Flow, Heat Flow,
Pressure and Tension, Velocity

Power, energy flow, heat flow									
Power	$\mathrm{erg} / \mathrm{s}$	W	$\mathrm{kpm} / \mathrm{s}$	PS	hp	kW	$\mathrm{kcal} / \mathrm{s}$	$\mathrm{Btu} / \mathrm{s}$	
$1 \mathrm{erg} / \mathrm{s}$	$=$	1	$10^{-7}$	$0.102 \cdot 10^{-7}$	$0.136 \cdot 10^{-9}$	$0.1341 \cdot 10^{-9}$	$10^{-10}$	$23.9 \cdot 10^{-12}$	$94.84 \cdot 10^{-12}$
1 W	$=$	$10^{7}$	1	0.102	$1.36 \cdot 100^{-3}$	$1.341 \cdot 10^{-3}$	$100^{-3}$	$239 \cdot 10^{-6}$	$948.4 \cdot 10^{-6}$
$\mathrm{kpm} / \mathrm{s}$	$=$	$9.807 \cdot 10^{7}$	9.807	1	$13.33 \cdot 10^{-3}$	$13.15 \cdot 10^{-3}$	$9.804 \cdot 10^{-3}$	$2.344 \cdot 10^{-3}$	$9.296 \cdot 10^{-3}$
$1 \mathrm{PS}(\mathrm{ch})^{2)}$	$=$	$7.355 \cdot 10^{9}$	735.5	75	1	0.9863	0.7355	0.1758	0.6972
1 hp	$=$	$7.457 \cdot 10^{9}$	745.7	76.04	1.014	1	0.7457	0.1782	0.7068
1 kW	$=$	$10^{101}$	1000	102	1.36	1.341	1	0.239	0.9484
$1 \mathrm{kcal} / \mathrm{s}$	$=$	$41.87 \cdot 10^{8}$	4187	426.9	5.692	5.614	4.187	1	3.968
$1 \mathrm{Btu} / \mathrm{s}$	$=$	$10.55 \cdot 10^{9}$	1055	107.6	1.434	1.415	1.055	0.252	1
1 poncelet (French $)=980.665 \mathrm{~W}$; flywheel effect: $1 \mathrm{kgm}^{2}=3418 \mathrm{lb} \mathrm{ln}^{2}$									

## Pressure and tension



1 psi $=0.00689 \mathrm{~N} / \mathrm{mm}^{2}$
$1 \mathrm{~N} / \mathrm{m}^{2}\left(\right.$ Newton $\left./ \mathrm{m}^{2}\right)=10 \mu \mathrm{~b}, 1$ barye $($ French $)=1 \mu \mathrm{~b}, 1$ piece $(\mathrm{pz})($ French $)=1 \mathrm{sn} / \mathrm{m}^{2} \approx 102 \mathrm{kp} / \mathrm{m}^{2} .1 \mathrm{hpz}=$ $100 \mathrm{pz}=1.02 \mathrm{kp} / \mathrm{m}^{2}$.
In the USA, "inches Hg " are calculated from the top, i.e. 0 inches $\mathrm{Hg}=760 \mathrm{~mm}$ QS and 29.92 inches $\mathrm{Hg}=0$ mm QS = absolute vacuum
The specific gravity of mercury is assumed to be $13.595 \mathrm{~kg} / \mathrm{dm}^{3}$.

Velocity						
Unit		$\mathrm{m} / \mathrm{s}$	$\mathrm{m} / \mathrm{min}$	$\mathrm{km} / \mathrm{h}$	$\mathrm{ft} / \mathrm{min}$	$\mathrm{mile} / \mathrm{h}$
$\mathrm{m} / \mathrm{s}$	$=$	1	60	3.6	196.72	2.237
$\mathrm{~m} / \mathrm{min}$	$=$	0.0167	1	0.06	3.279	0.0373
$\mathrm{~km} / \mathrm{h}$	$=$	0.278	16.67	1	54.645	0.622
$\mathrm{ft} / \mathrm{min}$	$=$	0.0051	0.305	0.0183	1	0.0114
$\mathrm{mile} / \mathrm{h}$	$=$	0.447	26.82	1.609	87.92	1

Physics
Equations for Linear Motion
and Rotary Motion

Definition	SI unit	Symbol	Basic formulae	
			Linear motion	Rotary motion
Uniform   Velocity   Angular velocity   Angle of rotation   Distance moved	$\begin{gathered} \mathrm{m} / \mathrm{s} \\ \mathrm{rad} / \mathrm{s} \\ \mathrm{rad} \\ \mathrm{~m} / \mathrm{s} \\ \mathrm{~m} \end{gathered}$	$\begin{aligned} & \mathrm{v} \\ & \omega \\ & \mathrm{@} \\ & \mathrm{v} \\ & \mathrm{~s} \end{aligned}$	distance moved divided by time $\begin{aligned} & v=\frac{s_{2}+s_{1}}{t_{2}+t_{1}}=\frac{s}{t}=\text { const. } \\ & \quad \text { motion accele } \\ & v=\frac{s}{t} \\ & s=v \cdot t \end{aligned}$	angular velocity = angle of rotation in radian measure/time $\pi=\frac{\varrho_{2}+\varrho_{1}}{t_{2}+t_{1}}=\frac{\varrho}{t}=\text { const. }$   rated from rest: $\varrho=\frac{\varrho}{t}$   angle of rotation $\varphi=\omega \cdot t$
Uniformly accelerated motion   Acceleration   Angular acceleration   Velocity   Circumferential speed   Distance moved	$\mathrm{m} / \mathrm{s}^{2}$ $\mathrm{rad} / \mathrm{s}^{2}$ $\mathrm{~m} / \mathrm{s}^{2}$ $\mathrm{~m} / \mathrm{s}$ $\mathrm{m} / \mathrm{s}$ m	a   $\alpha$   a   v   v   s	acceleration equals change of velocity divided by time $a=\frac{v_{2}+v_{1}}{t_{2}+t_{1}}=\frac{v}{t}=\text { const. }$   motion accele $\begin{aligned} & a=\frac{v}{t}=\frac{v^{2}}{2 s}=\frac{2 s}{t^{2}} \\ & v=a \quad t=\overline{2} a s \end{aligned}$ $s=\frac{v}{2} \quad t=\frac{a}{2} \quad t^{2}=\frac{v^{2}}{2 a}$	angular acceleration equals change of angular velocity divided by time $\mu=\frac{\pi_{2}+\pi_{1}}{t_{2}+t_{1}}=\frac{\pi}{t}=\text { const. }$   rated from rest: $\begin{gathered} \mu=\frac{\pi}{t}=\frac{\pi^{2}}{2 \varrho}=\frac{2 \varrho}{t^{2}} \\ \pi=\mu \quad t \\ v=r \quad \pi=r \quad \mu \quad t \\ \text { angle of rotation } \\ \varrho=\frac{\pi}{2} \quad t=\frac{\mu}{2} \quad t^{2}=\frac{\pi^{2}}{2 \mu} \end{gathered}$
Uniform motion and constant force or constant torque Work   Power	$J$	W	force • distance moved $W=F \cdot s$	torque • angle of rotation in radian measure $W=M \cdot \varphi$
	W	P	work in unit of time = force • velocity $P=\frac{W}{t}=F \quad v$	work in unit of time = torque - angular velocity $P=\frac{W}{t}=M \quad \pi$
Non-uniform (accelerated) motion Force	N	F	accelerating force $=$ mass acceleration $F=m \cdot a$	accel. torque $=$ second mass moment angular acceleration $M=J \cdot \alpha$
In case of any   motion   Energy   Potential energy   (due to force of   gravity)	$J$	$\mathrm{E}_{\mathrm{k}}$	$E_{k}^{*} \quad \frac{m}{2} v^{2}$	$E_{k}=\frac{J}{2} \pi^{2}$
	$J$	$\mathrm{E}_{\mathrm{p}}$	weight height$E_{p}=G \cdot h=m \cdot g \cdot h$	
Centrifugal force	N	$\mathrm{F}_{\mathrm{F}}$	$\mathrm{F}_{\mathrm{F}}=\mathrm{m} \cdot \mathrm{r}_{\mathrm{S}} \cdot \omega^{2}$ ( $\mathrm{r}_{\mathrm{s}}=$ centre-of-gravity radius)	

${ }_{* *}^{*}$ ) Momentum (kinetic energy) equals half the mass $\cdot$ second power of velocity.
${ }^{* *)}$ Kinetic energy due to rotation equals half the mass moment of inertia - second power of the angular velocity.
Mathematics / Geometry

A = area		$\mathbf{U}=$ circumference	
Square	$\begin{aligned} & \mathrm{A}=\mathrm{a}^{2} \\ & \mathrm{a} \\ & \mathrm{~A} \\ & \mathrm{~d} \\ & \mathrm{~d} \\ & \hline \end{aligned}$		$\begin{aligned} & A A_{1}+A_{2}+A_{3} \\ & \frac{a h_{1}+b h_{2}+b h_{3}}{2} \end{aligned}$
Rectangle	A a b   d $\overline{a^{2}+b^{2}}$	Formed area	$\begin{gathered} \text { A } \frac{\mathrm{r}^{2}}{2}(2 \overline{3}=\mu) \\ 0.16 \mathrm{r}^{2} \end{gathered}$
Parallelogram	A a h a $\frac{A}{h}$	Circle	$\begin{aligned} & \mathrm{A} \frac{\mathrm{~d}^{2} \mu}{4} \mathrm{r}^{2} \mu \\ & 0.785 \mathrm{~d}^{2} \\ & \mathrm{U} \quad 2 r \mu \quad \mathrm{~d} \quad \mu \end{aligned}$
Trapezium $=\frac{a b}{a}$	A m h   m $\frac{\{a+b\}}{2}$	Circular ring	$\begin{aligned} & \text { A } \quad \frac{\mu}{4} \quad\left(D^{2}=d^{2}\right) \\ & \\ & (d+b) b \quad \mu \\ & \text { b } \quad \frac{\{D=d\}}{2} \end{aligned}$
Triangle	A $\frac{\{\mathrm{a} \mathrm{h}\}}{2}$   a $\frac{\{2 \quad \mathrm{~A}\}}{\mathrm{h}}$	Circular sector	$\begin{aligned} & A \frac{r^{2} \quad \mu \quad}{\mu} \quad \circ \\ & 360^{\circ} \\ & \frac{\{b \quad r}{2} \\ & \text { b } \quad \frac{\{r \quad \mu \quad o}{180^{\circ}} \end{aligned}$
Equilateral triangle   Hexagon	A $\frac{\mathrm{a}^{2}}{4} \overline{3}$   d $\frac{a}{2} \overline{3}$   A $\frac{3 \quad a^{2} \quad \overline{3}}{2}$	Circular segment	$\begin{aligned} & \text { A } \quad \frac{r^{2}}{2} \frac{\{0 \quad \mu\}}{180}=\sin \\ & \\ & \frac{1}{2}[r(b=s)+s h] \\ & \text { s } 2 r \sin \overline{2} \\ & \text { h } r\left(1=\cos \frac{a}{2}\right) \quad \frac{s}{2} \tan _{\overline{4}} \\ & \text { A } \frac{\{o \mu\}}{180} \\ & \text { b } \end{aligned}$
	$\begin{array}{ccc} d & 2 & a \\ \mathrm{~s} & \overline{3} & a \end{array}$	Ellipse	$\begin{aligned} & A \frac{\{D d \mu\}}{4} \text { a b } \mu \\ & \mu \frac{\{D+d\}}{} \end{aligned}$
Octagon	$\begin{aligned} & \text { A } \quad 2 \mathrm{a}^{2}(\overline{2}+1) \\ & \text { d } \quad \text { a } \overline{4+2-2} \\ & \text { s } \\ & \text { a( } \overline{2+1}) \end{aligned}$		$\begin{aligned} & U \quad \mu(a+b)[1+ \\ & \frac{1}{4} \frac{\{a=b\}}{\{a+b\}}+\frac{1}{64} \frac{\{a=b\}}{\{a+b\}} \\ & \quad+\frac{1}{256} \frac{\{a=b\}}{\{a+b\}} \end{aligned}$


V = volume $\quad \mathrm{O}=$ surfac		$\mathbf{M}=$ generated surface	
	$\begin{array}{lll} v & a^{3} \\ 0 & 6 & a^{2} \\ d & a & \overline{3} \end{array}$	Frustum of cone	$\begin{array}{ll} v & \frac{\{\pi h\}}{12}\left(D^{2}+D d+d^{2}\right) \\ M & \frac{\{\pi m\}}{2}(D+d) \\ m & \frac{p h}{\left.\frac{\{D=d\}}{2}\right\}^{2}}+h^{2} \end{array}$
Parallelepiped	$\begin{array}{lll} v & a & b \\ 0 & c \\ 0 & 2(a b+a c+b c) \\ d & \overline{a^{2}+b^{2}+c^{2}} \end{array}$	Sphere	$\begin{aligned} \vee & \frac{4}{3} r^{3} \pi \quad \frac{1}{6} \quad d^{3} \pi \\ & 4.189 r^{3} \\ \circ & 4 \pi r^{2} \pi d^{2} \end{aligned}$
Rectangular block	v A h (Cavalier principle)	Spherical zone	$\begin{aligned} & V \frac{\{\pi h\}}{6}\left(3 a^{2}+3 b^{2}+h^{2}\right) \\ & M \quad 2 r \pi h \end{aligned}$
Pyramid	$\left.v \frac{\{\mathrm{~A}}{\mathrm{A}}\right\}$	Spherical segment	$\begin{aligned} & \text { V } \frac{\{\pi h\}}{6} \frac{3}{4} s^{2}+h^{2} \\ & \pi h^{2} r=\frac{h}{3} \\ & M \quad 2 r \pi h \\ & \\ & \frac{\pi}{4}\left(s^{2}+4 h^{2}\right) \end{aligned}$
Frustum of pyramid	$\begin{gathered} \frac{h}{3}\left(A_{1}+A_{2}+\overline{A_{1} A_{2}}\right) \\ h \frac{A_{1}+A_{2}}{2} \end{gathered}$	Spherical sector	$\begin{aligned} & v \frac{2}{3} h r^{2} \pi \\ & 0 \frac{\{\pi r\}}{2}(4 h+s) \end{aligned}$
	$\begin{array}{ll} V & \frac{d^{2} \pi}{4} h \\ M & 2 r \pi h \\ 0 & 2 r r(r+h) \end{array}$	Cylindrical ring	$\begin{aligned} & V \frac{D \pi^{2} d^{2}}{4} \\ & O D d \pi^{2} \end{aligned}$
Hollow cylinder	$\vee \frac{\{\mathrm{h} \pi\}}{4}\left(\mathrm{D}^{2}=\mathrm{d}^{2}\right)$	Cylindrical barrel	$\checkmark \frac{\{h \pi\}}{12}\left(2 D^{2}+d^{2}\right)$
	$\begin{array}{ll} \mathrm{V} & \frac{\mathrm{r}^{2} \pi \mathrm{~h}}{3} \\ \mathrm{M} & \mathrm{r} \pi^{\pi} \mathrm{m} \\ 0 & \mathrm{r} \\ \pi(\mathrm{r}+\mathrm{m}) \\ \mathrm{m} & {\sqrt{\mathrm{~h}^{2}+\frac{\mathrm{d}}{2}^{2}}}^{2} \end{array}$		$v \frac{h}{6}\left(A_{1}+A_{2}+4 A\right)$

Mechanics / Strength of Materials ..... PageAxial Section Moduli and Axial Second Moments of Area(Moments of Inertia) of Different Profiles66
Deflections in Beams ..... 67
Values for Circular Sections ..... 68
Stresses on Structural Members and Fatigue Strength of Structures ..... 69

## Mechanics / Strength of Materials

Axial Section Moduli and Axial Second Moments of Area
(Moments of Inertia) of Different Profiles

Cross-sectional area	Section modulus	Second moment of area
	$\begin{array}{ll} \mathrm{w}_{1} & \mathrm{bh}^{2} 6 \\ \mathrm{w}_{2} & \mathrm{hb}^{2} 6 \end{array}$	$\begin{array}{lll} 1 & b h^{3} & 12 \\ 2 & h b^{3} & 12 \end{array}$
	$\mathrm{W}_{1} \quad \mathrm{~W}_{2} \quad \mathrm{a}^{3} 6$	$1 \quad 2 \quad a^{4} 12$
	$\begin{array}{lll} w_{1} & {b h^{2}}^{24} \text { for e } & \frac{2}{3} h \\ w_{2} & h b^{2} 24 \end{array}$	$\begin{array}{lll} 1 & b h^{3} & 36 \\ 2 & \text { hb }^{3} & 48 \end{array}$
	$\begin{array}{lll} W_{1} & \frac{5}{8} R^{3} & 0.625 R^{3} \\ W_{2} & 0.5413 R^{3} \end{array}$	$1 . \quad 2 \quad \frac{5}{16} \quad \overline{3} R^{4} \quad 0.5413 R^{4}$
	$\begin{aligned} & w_{1} \frac{6 b^{2}+6 b b_{1}+b^{2} 1}{12\left(3 b+2 b_{1}\right)} h^{2} \\ & \text { for e } \frac{1}{3} \frac{3 b+2 b_{1}}{2 b+b_{1}} h \end{aligned}$	$1 \frac{6 b^{2}+6 b b_{1}+b^{2} 1}{36\left(2 b+b_{1}\right)} h^{3}$
	$\mathrm{w}_{1} \frac{B H^{3}=\mathrm{bh}^{3}}{6 H}$	$1 \frac{\mathrm{BH}^{3}=\mathrm{bh}^{3}}{12}$
		$1 \quad 2 \quad \mathrm{OD}^{4} \quad 64 \quad \mathrm{D}^{4} 20$
	$\begin{array}{lll} \mathrm{w}_{1} & \mathrm{w}_{2} & \frac{\mathrm{o}}{32} \frac{\mathrm{D}^{4}=\mathrm{d}^{4}}{\mathrm{D}} \\ \text { or in case of thin } \\ \mathrm{w}_{1} & \mathrm{w}_{2} & (\mathrm{r}+\mathrm{s} 2) \quad \mathrm{osr}^{2} \end{array}$	$1 \quad 2 \quad \frac{0}{64}\left(D^{4}=d^{4}\right)$   all thickness s: $1 \underset{\varrho s r^{3}}{2} \varrho \mathrm{gr}^{3} 1+(\mathrm{s} 2 r)^{2}$
	$\begin{array}{ll} w_{1} & \varrho a^{2} b 4 \\ w_{2} & e b^{2} a 4 \end{array}$	$\begin{array}{ll} 1 & \varrho^{3} a^{3} 4 \\ 2 & \mathrm{eb}^{3} a_{4} \end{array}$
	$\begin{aligned} & W_{1} \quad{ }^{1} a_{1} \\ & \quad \text { s } \quad a_{1}=a_{2} \quad b_{1}=b_{2} \\ & W_{1} \quad \frac{\rho}{4} a(a+3 b) s \end{aligned}$	$\begin{aligned} & \quad \frac{\mathrm{o}}{4}\left(a^{3} 1 b_{1}=a^{3} 2 b_{2}\right) \\ & \text { ickness is } \\ & \left(a=a_{2}\right) \quad 2\left(b=b_{2}\right) \text { thin } \\ & 1 \\ & \frac{9}{4} a^{2}(a+3 b) s \end{aligned}$
		$\left[\begin{array}{lll} {[\varrho=8} & (9 \varrho) r^{4} & 0.1098 r^{4} \end{array}\right.$   entre of gravity

## Mechanics / Strength of Materials

## Deflections in Beams

$\begin{aligned} & \mathrm{f}, \mathrm{f}_{\max }, \mathrm{f}_{\mathrm{m}}, \mathrm{w}, \mathrm{w}_{1}, \mathrm{w}_{2} \\ & \mathrm{a}, \mathrm{~b}, \mathrm{I}, \mathrm{x}_{1}, \mathrm{x}_{1 \max }, x_{2} \\ & \mathrm{E} \\ & \mathrm{q}, \mathrm{q}_{\mathrm{o}} \end{aligned}$	Deflection (mm)   Lengths (mm)   Modulus of elasticity ( $\mathrm{N} / \mathrm{mm}^{2}$ )   Line load ( $\mathrm{N} / \mathrm{mm}$ )	$\alpha, \alpha_{1}, \alpha_{2}, \alpha_{A}, \alpha_{B},$   F, $F_{A}, F_{B}$   I Second moment of area $\left(\mathrm{mm}^{4}\right)$ (moment of inertia)	Angle ( ${ }^{\circ}$ )   Forces (N)
	$\begin{aligned} & w(x) \frac{F^{3}}{\{3 E\}} \quad 1=\frac{3}{2} \underline{x}+\frac{1}{2} \underline{x}^{3} \\ & F_{\pi} F \end{aligned}$	$f \frac{F^{3}}{\{3 E\}} \quad \tan \mu$	$\frac{F^{2}}{\{2 E\}}$
	$\begin{aligned} & w(x) \frac{q^{4}}{\{8 E\}} 1=\frac{4}{3} \underline{x}+\frac{1}{3} \underline{x}^{4} \\ & F_{\pi} q \end{aligned}$	$f \frac{q^{4}}{\{8 E\}} \quad \tan \mu$	$\frac{q^{3}}{\{6 \mathrm{E}\}}$
	$\begin{aligned} & w(x) \frac{q_{0}{ }^{4}}{\{120 E\}} 4=5 \underline{x}+\underline{x}^{5} \\ & F_{\pi} \frac{q_{0}}{2} \end{aligned}$	$f \frac{q_{0}{ }^{4}}{\{30 E\}}$	$\frac{q_{0}{ }^{3}}{\{24 E\}}$
	$\begin{aligned} & \mathrm{w}(\mathrm{x}) \\ & \mathrm{F}^{3} \\ & \mathrm{~F}_{\mathrm{A}} \\ & \mathrm{~F}_{\mathrm{B}} \\ & \hline \frac{\mathrm{~F}}{2} \end{aligned}$	$\times \overline{2} \quad+\frac{F^{3}}{\{48 \mathrm{E}\}} \quad \tan \mu$	$\frac{F^{2}}{\{16 \mathrm{E}\}}$
	$\begin{aligned} & w_{1}\left(x_{1}\right) \frac{F^{3}}{\{6 E\}} \underline{a} \underline{b}^{2} \underline{x_{1}} \quad 1+\frac{1}{b}=\frac{x_{1}^{2}}{a b} \\ & w_{2}\left(x_{2}\right) \\ & F_{A} \frac{F^{3}}{\{6 E\}} \underline{b} \underline{a}^{2} \underline{x_{2}} \quad 1+\frac{x_{2}^{2}}{a}=\frac{x_{2}^{2}}{a b} \\ & F_{A} \quad F_{B} \quad F \underline{a} \end{aligned}$	$\begin{array}{llll} \frac{x_{1}^{2}}{a b} & x_{1} & a \quad f \frac{F^{3}}{\{3 E\}} \underline{a}^{2} \underline{b}^{2} \\ \frac{x_{2}^{2}}{a b} & x_{2} & b & f_{\max } \end{array} \quad \frac{\left\{+\frac{1+b}{3 b}\right.}{\frac{+b}{3 a}} .$	$\begin{aligned} & {\tan \mu_{1}}^{\frac{f}{2 a}}{ }^{1+} \bar{b} \\ & \tan _{2} \frac{f}{2 b}^{1+\frac{1}{a}} \end{aligned}$
		$\begin{aligned} & f \frac{F^{3}}{\{2 \mathrm{E}\}} \frac{a}{1}^{2} 1=\frac{4}{3} \underline{a} \quad \tan \mu_{1} \\ & f_{m} \quad \frac{F^{3}}{\{8 E\}} \underline{a}_{1=\frac{4}{3}}{ }^{2} \quad{\tan \mu_{2}}^{2}= \end{aligned}$	$\begin{aligned} & \frac{\mathrm{F}^{2}}{\{\mathrm{E}\}} \underline{\mathrm{a}}_{1=-} \\ & \frac{\mathrm{F}^{2}}{\{2 \mathrm{a}\}} \underline{\mathrm{a}}_{1=2 \mathrm{a}} \end{aligned}$
	$\begin{aligned} & \begin{array}{ll} x_{1} \text { a } & w_{1}\left(x_{1}\right) \end{array} \frac{F^{3}}{\{2 E\}} \frac{1}{3} \underline{x}^{3}= \\ & = \\ & x_{2} \\ & F_{A}=F_{B}=F \end{aligned} \quad w_{2}\left(x_{2}\right) \frac{F^{3}}{\{2 E\}} \underline{a^{x}} \underline{x_{2}} 11$	$=\underline{a} 1+\underline{a}^{x_{1}}+\underline{a}^{2} 1+\frac{2}{3} \underline{a}$ $1=\underline{x_{2}} \quad f_{m} \frac{F^{3}}{\{8 E\}} \underline{a}$	
	$\begin{aligned} & w_{1}\left(x_{1}\right) \frac{F^{3}}{\{6 E\}} \underline{a} \underline{x_{1}} 1=\underline{x}_{1}^{2} \\ & w_{2}\left(x_{2}\right) \\ & \frac{F^{3}}{\{6 E\}} \underline{x_{2}} \underline{2 a}+\underline{3 a} \underline{x_{2}}=\underline{x_{2}} \\ & F_{A} F \underline{F} \quad F_{B} \quad F 1+\underline{a} \end{aligned}$		
	$\begin{array}{lr} w(x) \frac{q^{4}}{\{24 E\}} \underline{x} & 1=2 \underline{x}^{2}+\underline{x}^{3} \\ F_{A} \frac{q}{2} & F_{B} \frac{q}{2} \end{array}$	$0 \times \quad{ }^{\mathrm{f}} \mathrm{~m} \frac{5 \mathrm{q}^{4}}{\{384 \mathrm{E}\}}$	$\tan \mu \frac{q^{3}}{\{24 E\}}$

## Mechanics / Strength of Materials

Axial section modulus:				a	$\frac{\pi \mathrm{d}^{3}}{32}$	Area:				$\frac{\pi \quad d^{2}}{4}$	
Polar section modulus:					$\frac{\pi \quad \mathrm{d}^{3}}{16}$	Mass:				$\pi$	${ }^{2}-1 \quad \varrho$
Axial second moment of area (axial moment of inertia):					$\begin{gathered} \pi \quad d^{4} \\ \hline 64 \end{gathered}$	Density of steel:			@	7,	$\frac{\mathrm{kg}}{\mathrm{dm}^{3}}$
Polar second moment of area (polar moment of area):					$\frac{\pi \quad d^{4}}{32}$	Second mass moment of inertia (mass moment of inertia):					$1 \varrho$
$\begin{gathered} \mathrm{d} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \hline \mathrm{A} \\ \mathrm{~cm}^{2} \end{gathered}$	$\begin{gathered} W_{a} \\ c^{3}{ }^{3} \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{a}} \\ \mathrm{~cm}^{4} \end{gathered}$	Mass /I kg/m	$\begin{gathered} \mathrm{J} / \mathrm{I} \\ \mathrm{kgm}^{2} / \mathrm{m} \end{gathered}$	mm	$\begin{gathered} \mathrm{A} \\ \mathrm{~cm}^{2} \end{gathered}$	$\begin{gathered} W_{a} \\ c^{3}{ }^{3} \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{a}} \\ \mathrm{~cm}^{4} \end{gathered}$	Mass/ I kg/m	$\begin{gathered} \mathrm{J} / \mathrm{I} \\ \mathrm{kgm}^{2} / \mathrm{m} \end{gathered}$
${ }^{6}$	0.293	0.0212	0.0064	0.222	0.000001	115.	103.869	149.3116	858.5414	81.537	0.134791
7.	0.385	0.0337	0.0118	0.302	0.000002	120.	113.097	169.6460	1017.8760	88.781	0.1598807
8.	0.503	0.0503	0.0201	0.395	0.000003	125.	122.718	191.7476	1198.4225	96.334	0.188152
9.	0.636	0.0716	0.0322	0.499	0.000005	130.	132.732	215.6900	1401.9848	104.195	0.220112
10.	0.785	0.0982	0.0491	0.617	0.000008	135.	143139	241.5468	1630.4406	${ }^{112.364}$	0.255979
11.	0.950	0.1307	0.0719	0.746	0.000011	140.	153.938	269.3916	1895.7410	120.841	0.296061
12.	1.131	0.1696	0.1018	0.888	0.000016	145.	165.130	299.2981	2169.9109	129.627	0.340676
13.	1.327	0.2157	0.1402	1.042	0.00002	150.	176.715	331.3398	2485.04	138.721	0.390153
14.	1.539	0.2694	0.1986	1.208	0.000030	155.	188.692	365.5906	2833.3269	148.123	0.444832
15.	1.767	0.3313	0.2485	1.387	0.000039	160.	201.062	402.1239	3216.9909	157.834	0.505068
16.	2.011	0.4021	0.3217	1.578	0.000051	165.	213.825	441.0133	3638.3601	167.852	0.571223
17.	2.270	0.4823	0.4100	1.782	0.000064	170.	226.980	482.3326	4099.8275	178.179	0.643673
18.	2.545	0.5726	0.5153	1.998	0.000081	175.	240.528	526.1554	4603.8598	188.815	0.722806
19.	2.835	0.6734	0.6397	2.226	0.000100	180.	254.469	572.5553	5152.9973	199.758	0.809021
20.	3.142	0.7854	0.7854	2.466	0.000123	185.	268.803	621.6058	5749.8539	211.010	0.902727
21.	3.464	0.9092	0.9547	2.719	0.000150	190.	283.529	${ }^{673.3807}$	6397.1171	222.570	1.004347
22.	3.801	1.0454	1.1499	2.984	0.000181	195.	298.648	727.9537	7097.5481	234.438	1.114315
23.	4.155	1.1945	1.3737	3.261	0.000216	200.	314.159	785.3982	7853.9816	246.615	1.233075
$\begin{aligned} & 24 . \\ & 25 . \\ & 26 . \\ & 27 . \\ & \\ & 28 . \\ & \hline \end{aligned}$	4.5	1.35	1.628	3.5	0.000	210.	346.	909	9546	271.893	11
	4.909	1.5340	1.9175	3.853	0.000301	220.	380.133	1045.3650	11499.0145	298.404	1.805345
	5.309	1.7255	2.2432	4.168	0.000352	230.	415.476	1194.4924	${ }^{13736.6629}$	326.148	2.156656
	5.726	1.9324	2.6087	4.495	0.000410	240.	452.389	1357.1680	16286.0163	355.126	2.556905
	6.158	2.1551	3.0172	4.834	0.000474	250.	490.874	1533.9808	19174.7598	385.336	3.010437
	6.605	2.3944	3.4719	5.185	0.000545	260.	530.929	1725.5198	22431.7569	416.779	3.521786
$\begin{aligned} & 30 . \\ & 32 . \\ & 34 . \\ & 36 . \\ & 38 . \\ & 40 . \end{aligned}$	7.069	2.6507	3.9761	5.549	0.000624	270.	572.555	${ }^{1932.3740}$	26087.0491	449.456	4.095667
	8.042	3.2170	5.1472	6.313	0.000808	280.	615.752	2155.1326	30171.8558	483.365	4.736981
	9.079	3.8587	6.5597	7.127	0.001030	300.	706.858	2650.7188	39760.7820	554.884	6.242443
	10.179	4.5804	8.2448	7.990	0.001294	320.	804.248	3216.9909	51471.8540	${ }_{7}^{631.374}$	8.081081
	11.341	5.3870	10.2354	8.903	0.001607	340.	907.920	3858.6612	65597.2399	712.717	10.298767
	12.566	6.2832	12.5664	9.865	0.001973	360.	1017.876	4580.4421	82447.9575	799.033	12.944329
4244464648505250	13.854	7.2736	15.2745	10.876	0.002398	380	1173.115	5387.0460	102353.8739	890.280	16.069558
	15.205	8.3629	18.3984	11.936	0.002889	400.	1256.637	6283.1853	125663.7060	986.460	19.729202
	16.619	9.5559	21.9787	13.046	0.003451	420.	1385.442	7273.5724	152745.0200	1087.572	23.980968
	18.09	10.8573	26.0576	14.205	0.004091	440.	1520.531	8362.9196	183984.2320	1193.617	28.885524
	19.635	12.2718	30.6796	15.413	0.004817	460.	1661.903	9555.9364	219786.6072	1304.593	34.506497
	21.237	13.9042	35.8908	16.671	0.005635	480.	1809.557	10857.3442	260576.2608	1420.503	40.910473
5456565860626464	22.902	15.4590	41.7393	17.978	0.006553		1693.495	12271.8463	306796.1572	1541.344	48.166997
	24.630	17.2411	48.2750	19.335	0.007579	520.	2123.717	13804.1581	358908.1107	1667.118	56.348573
	26.421	19.1551	55.5497	20.740	0.008721	540.	2290.221	15458.9920	417392.7849	1797.824	65.530667
	28.274	21.2058	63.6173	22.195	0.009988	560.	2463.009	17241.0605	482749.6930	1933.462	75.791702
	30.191	23.3978	72.5332	23.700	0.011388	580.	2642.079	19155.0758	555497.1978	2074.032	87.213060
	32.170	25.7359	82.3550	25.253	0.012930	600.	2827.433	21205.7504	636172.5116	2219.535	99.879084
6668.68.7072.274.76.7	34.212	28.2249	93.1420	26.856	0.014623	620.	3019.071	23397.7967	725331.6994	2369.970	113.877076
	36.317	30.8693	104.9556	28.509	0.016478	640.	3216.991	25735.9270	823549.6636	2525.338	129.297297
	38.485	33.6739	117.8588	30.210	0.018504	660.	3421.194	28224.8538	931420.1743	2685.638	146.232967
	40.715	36.6435	131.9167	31.961	0.020711	680.	3631.681	30869.2894	1049555.8389	2850.870	164.780267
	43.008	39.7828	147.1963	${ }^{33.762}$	0.023110	7700	3848.451	33673.9462	1178588.1176	3021.034	185.038334
	45.365	43.0964	163.7662	35.611	0.025711	720.	4071.504	36643.5367	1319167.3201	3196.131	207.109269
78.   88   88   84   86   88.   8.	47.784	46.5890	181.6972	37.510	0.028526	740.	4300.840	39782.7731	1471962.6056	3376.160	231.098129
	50.265	50.2655	201.0619	39.458	0.031567	760.	4536.460	43096.3680	1637661.9830	3561.121	257.112931
	52.810	54.1304	221.9347	41.456	0.034844	780	4778.362	46589.0336	1816972.3105	3751.015	285.264653
	55.418	58.1886	244.3920	43.503	0.038370	800.	5026.548	50265.4824	2010619.2960	3945.840	315.667229
	58.08	62.4447	268.5120	45.599	0.042156	820.	5281.017	54130.4268	2219347.4971	4145.599	348.437557
	60	66.9034	294.3748	47	0.046217	840.	5541.76	58188.5791	2443920.3207	4350.2	383.695490
100.105110.	63.617	71.5694	322.0623	49.940	0.050564			62444.6517	2685120.0234	4559.912	421.563844
	66.476	76.4475	351.6586	52.184	0.055210	880.	6082.123	66903.3571	2943747.7113	4774.467	462.168391
		84.1726	仡	55.	0.07772	900.	6361.725	71569.4076	3220623.341	4993.954	505.637864
	78.540	98.1748	490.8739	61.654	0.077067	920.	6647.610	76447.5155	3516555.7151	5218.374	552.103957
	86.590	113.6496	596.6602	67.973	0.093676	940.	6939.778	81542.3934	3832492.4910	5447.726	601.701321
	95.033	130.6706	718.6884	74.601	0.112834	960.	7238.229	86858.7536	4169220.172	5682.010	654.567567
						980.	7542.964	92401.3084	452764.	5921	710.8432
						1000.	7853.982	98174.7703	4908738.5156	6165.376	770.671947

## Mechanics / Strength of Materials

Stresses on Structural Members
and Fatigue Strength of Structures
 $\begin{array}{llll}\text { Resistance to } & \text { Fatigue strength under } & \text { Fatigue strength under } & \begin{array}{l}\text { Resistance to } \\ \text { breaking } R_{m}\end{array} \\ \text { fluctuating stresses } \sigma_{S c h} & \text { alternating stresses } \sigma_{W} & \text { deflection } \sigma_{A}\end{array}$ Yield point $R_{e} ; R_{p 0.2} \quad$ Coefficients of fatigue strength $\sigma_{D}$


Reduced stress Permissible Design strength with: $\sigma_{D}=$ ruling fatigue strength value of on the member stress of the member
$v \quad$ perm. $\frac{D b_{0} b_{d}}{S \beta_{k}}$
$\mathrm{b}_{0}=$ surface number $(\leq 1)$
$\mathrm{b}_{\mathrm{d}}=$ size number $(\leq 1)$
$\mathrm{B}_{\mathrm{k}}=$ stress concentration factor $(\geq 1)$
$S=$ safety (1.2 ... 2)

Reduced stress $\sigma_{v}$
For the frequently occurring case of com-
bined bending and torsion, according to the distortion energy theory:
with:
$\sigma=$ single axis bending stress
$\tau=$ torsional stress
$\alpha_{0}=$ constraint ratio according to Bach

$$
\begin{array}{ll}
\overline{2}+3\left(\mu_{0}\right)^{2} & \begin{array}{l}
\text { Alternating bending, dynamic torsion: } \\
\text { Alternating bending, alternating torsion: }
\end{array} \alpha_{0} \approx 0.7 \\
\alpha_{0} \approx 1.0
\end{array}
$$

$$
\begin{array}{ll}
\text { Alternating bending, dynamıc torsion: } & \alpha_{0} \approx 0.1 \\
\text { Alternating bending, alternating torsion: } & \alpha_{0} \approx 1.0 \\
\text { Statir hendinc altornating torsion. }
\end{array}
$$

$$
\text { Static bending, alternating torsion: } \quad \alpha_{0} \approx 1.6
$$




## Hydraulics

(Source: K. Gieck, Technische Formelsammlung, 29th Edition, Gieck Verlag, D-7100 Heilbronn)

## Hydrodynamics

(Source: K. Gieck, Technische Formelsammlung, 29th Edition, Gieck Verlag, D-7100 Heilbronn)


Discharge of liquids from vessels	
Vessel with bottom opening	
$\begin{array}{lc} v & \overline{2 g H} \\ \dot{v} & \varrho A \overline{2 g H} \end{array}$	
Vessel with small lateral opening	
$\begin{array}{ll} \mathrm{V} & \overline{2 \mathrm{gH}} \\ \mathrm{~s} & \begin{array}{l} 2 \overline{\mathrm{Hh}} \\ \text { (without any coefficient of friction) } \\ \mathrm{V} \end{array} \varrho \varrho \mathrm{~A} \overline{2 \mathrm{gH}} \\ \mathrm{~F} & \dot{\mathrm{VV}} \end{array}$	
Vessel with wide lateral opening	
$\dot{\vee} \quad \frac{2}{3} \mathrm{gb} \overline{2 \mathrm{~g}}\left(\mathrm{H}_{2}^{32}=\mathrm{H}_{1}^{32}\right)$	
Vessel with excess pressure on liquid level	
$\begin{array}{ll} v & 2\left(\mathrm{gH}+\frac{\mathrm{p}_{\overline{\mathrm{u}}}}{}\right) \\ \dot{V} & \mathrm{~A} \\ \left.\hline \overline{2\left(\mathrm{gH}+\underline{\mathrm{p}_{\vec{u}}}\right.}\right) \end{array}$	
Vessel with excess pressure on outlet	
$\begin{array}{ll} v & \overline{2 \underline{p_{\mathrm{u}}}} \\ \dot{\mathrm{~V}} & \mathrm{~A} \overline{2 \underline{\mathrm{p}_{\mathrm{u}}}} \end{array}$	
v: discharge velocity   g: gravity   density   $\mathrm{p}_{\mathrm{u}}$ : excess pressure compared to exter   $\varphi$ : coefficient of friction (for water $\varphi=0$   $\varepsilon$ : coefficient of contraction ( $\varepsilon=0.62$ fo $\text { ( } \varepsilon=0.97 \text { for }$   $F$ : force of reaction   $\dot{V}$ : volume flow rate   b : width of opening	ure   dged openings) rounded openings)

## Table of Contents Section 7

Electrical Engineering ..... Page
Basic Formulae ..... 74
Speed, Power Rating and Efficiency of Electric Motors ..... 75
Types of Construction and Mounting Arrangements of Rotating Electrical Machinery ..... 76
Types of Protection for Electrical Equipment ..... 77
(Protection Against Contact and Foreign Bodies)
Types of Protection for Electrical Equipment (Protection Against Water) ..... 78
Explosion Protection of Electrical Switchgear ..... 79
(Types of protection)
Explosion Protection of Electrical Switchgear

## Electrical Engineering

## Basic Formulae



## Electrical Engineering

Speed, Power Rating and Efficiency
of Electric Motors

## Speed:

## Power rating:

n $\frac{f \quad 60}{p}$
$\mathrm{n}=$ speed $\left(\min ^{-1}\right)$
$\mathrm{f}=$ frequency ( Hz )
$p=$ number of pole pairs
Example: $\mathrm{f}=50 \mathrm{~Hz}, \mathrm{p}=2$
n $\frac{50 \quad 60}{2} \quad 1500 \mathrm{~min}=1$
Output power 1)
Direct current: -
$P_{a b}=U \cdot \eta$
Single-phase alternating current:
$P_{a b}=U \cdot \cos \cdot \varrho$
Three-phase current:
$P_{a b}=1.73 \cdot \mathrm{U} \cdot \cdot \cos \cdot \varrho$
Efficiency:
@ $\frac{P_{a b}}{P_{z u}} 100 \%{ }^{1)}$

Example:
Efficiency and power factor of a four-pole 1.1-kW motor and a 132-kW motor dependent on the load


1) $P_{a b}=$ mechanical output power on the motor shaft
$P_{z u}=$ absorbed electric power

## Electrical Engineering

Types of Construction and Mounting Arrangements
of Rotating Electrical Machinery

Types of construction and mounting arrangements of rotating electrical machinery [Extract from DIN/IEC 34, Part 7 (4.83)]						
Machines with end shields, horizontal arrangement						
Design		Explanation				
$\begin{array}{\|l} \text { Sym- } \\ \text { bol } \end{array}$	Figure	Bearings	Stator (Housing)	Shaft	General design	Design/Explanation Fastening or Installation
B3	$=\begin{gathered} 1 \\ \hdashline 1 \\ \vdots \end{gathered}$	$\begin{gathered} 2 \\ \text { end } \\ \text { shields } \end{gathered}$	with   feet	free shaft end	-	installation on substructure
B5		$\begin{gathered} 2 \\ \text { end } \\ \text { shields } \end{gathered}$	without feet	free shaft end	mounting flange close to bearing, access from housing side	flanged
B6	身	$\begin{gathered} 2 \\ \text { end } \\ \text { shields } \end{gathered}$	with feet	free shaft end	design B3, if necessary end shields turned through - $90^{\circ}$	wall fastening, feet on LH side when looking at input side
B7		$\begin{gathered} 2 \\ \text { end } \\ \text { shields } \end{gathered}$	with feet	free shaft end	design B3, if necessary end shields turned through $90^{\circ}$	wall fastening, feet on RH side when looking at input side
B8		$\begin{gathered} 2 \\ \text { end } \\ \text { shields } \end{gathered}$	with feet	free shaft end	design B3, if necessary end shields turned through $180^{\circ}$	fastening on ceiling
B 35	$=\begin{array}{l:l} 1 & - \\ \hdashline: & - \end{array}$	$\begin{gathered} 2 \\ \text { end } \\ \text { shields } \end{gathered}$	with feet	free   shaft   end	mounting flange close to bearing, access from housing side	installation on substructure with additional flange


Machines with end shields, vertical arrangement						
Design		Explanation				
Symbol	Figure	Bearings	Stator (Housing)	Shaft	General design	Design/Explanation Fastening or Installation
V 1		$\begin{gathered} 2 \\ \text { end } \\ \text { shields } \end{gathered}$	without feet	free   shaft end at the bottom	mounting flange close to bearing on input side, access from housing side	flanged at the bottom
V 3		$\begin{gathered} 2 \\ \text { end } \\ \text { shields } \end{gathered}$	without feet	free shaft end at the top	mounting flange close to bearing on input side, access from housing side	flanged at the top
V 5		$\begin{gathered} 2 \\ \text { end } \\ \text { shields } \end{gathered}$	with feet	free shaft end at the bottom	-	fastening to wall or on substructure
V 6	$\stackrel{+}{4}$		with feet	free shaft end at the top	-	fastening to wall or on substructure

## Electrical Engineering

Types of Protection for Electrical Equipment
(Protection Against Contact and Foreign Bodies)

Types of protection for electrical equipment [Extract from DIN 40050 (7.80)]					
  An enclosure with this designation is protected against the ingress of solid foreign bodies having a diameter above 1 mm and of splashing water.					
Degrees of protection for protection against contact and foreign bodies (first type number)					
First type number	Degree of protection (Protection against contact and foreign bodies)				
0	No special protection				
1	Protection against the ingress of solid foreign bodies having a diameter above 50 mm (large foreign bodies) 1)   No protection against intended access, e.g. by hand, however, protection of persons against contact with live parts				
2	Protection against the ingress of solid foreign bodies having a diameter abov 12 mm (medium-sized foreign bodies) 1)   Keeping away of fingers or similar objects				
3	Protection 2.5 mm (sm Keeping a	ingress of solid for bodies) 1) 2) wires or similar objec	ign bodies having s having a thickne		
4	Protection 1 mm (grai Keeping a	ingress of solid fore eign bodies) 1) 2) wires or similar objec	ign bodies having s having a thickne		
5	Protection prevented, equipment Complete	armful dust covers. dust may not enter to (dustproof). 3) against contact	The ingress of du such an amount tha		nti
6	Protection Complete	ingress of dust (du against contact	t-tight)		
1) For equipment with degrees of protection from 1 to 4 , uniformly or non-uniformly shaped foreign bodies with three dimensions perpendicular to each other and above the corresponding diameter values are prevented from ingress.   2) For degrees of protection 3 and 4 , the respective expert commission is responsible for the application of this table for equipment with drain holes or cooling air slots.   3) For degree of protection 5 , the respective expert commission is responsible for the application of this table for equipment with drain holes.					

## Electrical Engineering

Types of Protection for Electrical Equipment
(Protection Against Water)

Types of protection for electrical equipment [Extract from DIN 40050 (7.80)]	
Example of   Designation   DIN number   Code letters   First type num   Second type   An enclosure   having a diam	Type of protection DIN 40050   with this designation is protected against the ingress of solid foreign bodies ter above 1 mm and of splashing water.
Degrees of protection for protection against water (second type number)	
Second type number	Degree of protection (Protection against water)
0	No special protection
1	Protection against dripping water falling vertically. It may not have any harmful effect (dripping water).
2	Protection against dripping water falling vertically.   It may not have any harmful effect on equipment (enclosure) inclined by up to $15^{\circ}$ relative to its normal position (diagonally falling dripping water).
3	Protection against water falling at any angle up to $60^{\circ}$ relative to the perpendicular. It may not have any harmful effect (spraying water).
4	Protection against water spraying on the equipment (enclosure) from all directions.   It may not have any harmful effect (splashing water).
5	Protection against a water jet from a nozzle which is directed on the equipment (enclosure) from all directions.   It may not have any harmful effect (hose-directed water).
6	Protection against heavy sea or strong water jet.   No harmful quantities of water may enter the equipment (enclosure) (flooding).
7	Protection against water if the equipment (enclosure) is immersed under determined pressure and time conditions.   No harmful quantities of water may enter the equipment (enclosure) (immersion).
8	The equipment (enclosure) is suitable for permanent submersion under conditions to be described by the manufacturer (submersion). 1)

1) This degree of protection is normally for air-tight enclosed equipment. For certain equipment, however, water may enter provided that it has no harmful effect.

## Electrical Engineering

Explosion Protection of Electrical Switchgear


Materials ..... Page
Conversion of Fatigue Strength Values of Miscellaneous Materials ..... 82
Mechanical Properties of Quenched and Tempered Steels ..... 83
Fatigue Strength Diagrams of Quenched and Tempered Steels ..... 84
General-Purpose Structural Steels ..... 85
Fatigue Strength Diagrams of General-Purpose Structural Steels ..... 86
Case Hardening Steels ..... 87
Fatigue Strength Diagrams of Case Hardening Steels ..... 88
Cold Rolled Steel Strips for Springs ..... 89
Cast Steels for General Engineering Purposes ..... 89
Round Steel Wire for Springs ..... 90
Lamellar Graphite Cast Iron ..... 91
Nodular Graphite Cast Iron ..... 91
Copper-Tin- and Copper-Zinc-Tin Casting Alloys ..... 92
Copper-Aluminium Casting Alloys ..... 92
Aluminium Casting Alloys ..... 93
Lead and Tin Casting Alloys for Babbit Sleeve Bearings ..... 94
Comparison of Tensile Strength and Miscellaneous Hardness Values ..... 95
Values of Solids and Liquids ..... 96
Coefficient of Linear Expansion ..... 97
Iron-Carbon Diagram ..... 97
Fatigue Strength Values for Gear Materials ..... 97
Heat Treatment During Case Hardening of Case Hardening Steels ..... 98

## Materials

Conversion of Fatigue Strength Values
of Miscellaneous Materials

Conversion of fatigue strength values of miscellaneous materials								
Material	Tension ${ }^{\text {3) }}$		Bending 1)			Torsion 1)		
	$\sigma_{\text {W }}$	$\sigma_{\text {Sch }}$	$\sigma_{\mathrm{bW}}$	$\sigma_{\mathrm{bSch}}$	$\sigma_{\mathrm{bF}}$	$\tau_{\mathrm{t} W}$	$\tau_{\text {tSch }}$	$\tau_{F}$
Structural steel	$0.45 \mathrm{R}_{\mathrm{m}}$	$1.3 \sigma_{W}$	$0.49 \mathrm{Rm}_{\mathrm{m}}$	$1.5 \sigma_{\mathrm{bW}}$	$1.5 \mathrm{R}_{\mathrm{e}}$	$0.35 \mathrm{R}_{\mathrm{m}}$	$1.1 \tau_{\text {fW }}$	$0.7 \mathrm{R}_{\mathrm{e}}$
Quenched and tempered steel	$0.41 \mathrm{R}_{\mathrm{m}}$	$1.7 \sigma_{W}$	$0.44 \mathrm{Rm}_{\mathrm{m}}$	$1.7 \sigma_{\mathrm{bW}}$	$1.4 \mathrm{R}_{\mathrm{e}}$	$0.30 \mathrm{Rm}_{\mathrm{m}}$	$1.6 \tau_{\text {tw }}$	$0.7 \mathrm{R}_{\mathrm{e}}$
Case hardening steel ${ }^{2)}$	$0.40 \mathrm{R}_{\mathrm{m}}$	$1.6 \sigma_{W}$	$0.41 \mathrm{Rm}_{\mathrm{m}}$	$1.7 \sigma_{\mathrm{bW}}$	$1.4 \mathrm{R}_{\mathrm{e}}$	$0.30 \mathrm{Rm}_{\mathrm{m}}$	$1.4 \tau_{\text {tw }}$	$0.7 \mathrm{R}_{\mathrm{e}}$
Grey cast iron	$0.25 \mathrm{R}_{\mathrm{m}}$	1.6 WW	$0.37 \mathrm{R}_{\mathrm{m}}$	$1.8 \sigma_{\mathrm{bW}}$	-	$0.36 \mathrm{R}_{\mathrm{m}}$	$1.6 \tau_{\mathrm{tW}}$	-
Light metal	$0.30 \mathrm{R}_{\mathrm{m}}$	-	$0.40 \mathrm{Rm}_{\mathrm{m}}$	-	-	$0.25 \mathrm{R}_{\mathrm{m}}$	-	-

1) For polished round section test piece of about 10 mm diameter.
2) Case-hardened; determined on round section test piece of about 30 mm diameter. $R_{m}$ and $R_{e}$ of core material.
3) For compression, $\sigma_{\text {Sch }}$ is larger, e.g. for spring steel $\sigma_{\mathrm{dSch}} \approx 1.3 \cdot \sigma_{\mathrm{Sch}}$ For grey cast iron $\sigma_{d S c h} \approx 3 \cdot \sigma_{S c h}$

Ultimate stress values		Type of load
$R_{\mathrm{m}}$	Tensile strength	Tension
$\mathrm{R}_{\mathrm{e}}$	Yield point	Tension
$\sigma_{\mathrm{W}}$	Fatigue strength under   alternating stresses	Tension
$\sigma_{\mathrm{Sch}}$	Fatigue strength under   fluctuating stresses	Tension
$\sigma_{\mathrm{bW}}$	Fatigue strength under   alternating stresses	Bending
$\sigma_{\mathrm{bSch}}$	Fatigue strength under   fluctuating stresses	Bending
$\sigma_{\mathrm{bF}}$	Yield point	Bending
$\tau_{\mathrm{tW}}$	Fatigue strength under   alternating stresses	Torsion
$\tau_{\mathrm{tSch}}$	Fatigue strength under   fluctuating stresses	Torsion
$\tau_{\mathrm{tF}}$	Yield point	Torsion

## Materials

Mechanical Properties of
Quenched and Tempered Steels

Quenched and tempered steels [Extract from DIN 17200 (3.87)] Mechanical properties of steels in quenched and tempered condition (Code letter V)											
Steel grade		up to 16 mm		above 16 up to 40 mm		$\begin{gathered} \text { Diameter } \\ \text { above } 40 \\ \text { up to } 100 \mathrm{~mm} \end{gathered}$		$\begin{aligned} & \text { above } 100 \\ & \text { up to } 160 \mathrm{~mm} \end{aligned}$		$\begin{aligned} & \text { above } 160 \\ & \text { up to } 250 \mathrm{~mm} \end{aligned}$	
Symbol	Material no.	Yield   point   $(0.2$   Gr)   $\mathrm{G} / \mathrm{mm}^{2}$   $\mathrm{~min}^{2}$   $\mathrm{R}_{\mathrm{e}}$,   $\mathrm{R}_{\mathrm{p} 0.2}$	Tensile strength $\mathrm{N} / \mathrm{mm}^{2}$ $R_{m}$	Yield   point   $(0.2$   $\mathrm{Gr})$   $\mathrm{N} / \mathrm{mm}^{2}$   min.   Re,   Rp 0.2	Tensile strength $\mathrm{N} / \mathrm{mm}^{2}$ $\mathrm{R}_{\mathrm{m}}$	Yield   point   $(0.2$   $\left.\mathrm{Gr}^{2}\right)$   $\mathrm{N} / \mathrm{mm}^{2}$   $\mathrm{~min}^{2}$   $\mathrm{R}_{\mathrm{e}}$,   $\mathrm{R}_{\mathrm{p}} 0.2$	Tensile strength $\mathrm{N} / \mathrm{mm}^{2}$ $\mathrm{R}_{\mathrm{m}}$	Yield   point   $(0.2$   $\mathrm{Gr}^{2}$   $\mathrm{G} / \mathrm{mm}^{2}$   $\mathrm{~min}^{2}$   $\mathrm{R}_{\mathrm{e}}$,   $\mathrm{R}_{\mathrm{p}} 0.2$	Tensile strength $\mathrm{N} / \mathrm{mm}^{2}$ $\mathrm{R}_{\mathrm{m}}$	Yield   point   ( 0.2   Gr)   $\mathrm{N}^{2} / \mathrm{min}^{2}$   $\mathrm{~min}^{2}$   $\mathrm{R}_{\mathrm{e}}$,   $\mathrm{R}_{\mathrm{p}} 0.2$	Tensile strength $\mathrm{N} / \mathrm{mm}^{2}$ $\mathrm{R}_{\mathrm{m}}$
C 22	1.0402	350	550-700	300	500-650	-	-	-	-	-	-
C 35	1.0501	430	630-780	370	600-750	320	550-700	-	-	-	-
C 45	1.0503	500	700-850	430	650-800	370	630-780	-	-	-	-
C 55	1.0535	550	800-950	500	750-900	430	700-850	-	-	-	-
C 60	1.0601	580	850-1000	520	800-950	450	750-900	-	-	-	-
Ck 22	1.1151	350	550-700	300	500-650	-	-	-	-		
Ck 35	1.1181	430	630-780	370	600-750	320	550-700	-	-		
Cm 35	1.1180	430	630-780	370	600-750	320	550-700	-	-	-	
Ck 45	1.1191	500	700-850	430	650-800	370	630-780	-	-	-	
Cm 45	1.1201	500	700-850	430	650-800	370	630-780	-	-	-	
Ck 55	1.1203	550	800-950	500	750-900	430	700-850	-	-		
Cm 55	1.1209	550	800-950	500	750-900	430	700-850	-	-		-
Ck 60	1.1221	580	850-1000	520	800-950	450	750-900	-		-	
Cm 60	1.1223	580	850-1000	520	800-950	450	750-900	-	-		
28 Mn 6	1.1170	590	780-930	490	690-840	440	640-790	-	-	-	-
38 Cr 2	1.7003	550	800-950	450	700-850	350	600-750	-	-	-	-
46 Cr 2	1.7006	650	900-1100	550	800-950	400	650-800	-	-	-	-
34 Cr 4	1.7033	700	900-1100	590	800-950	460	700-850	-	-	-	-
$34 \mathrm{Cr} \mathrm{S4}$	1.7037	700	900-1100	590	800-950	460	700-850	-	-	-	-
37 Cr 4	1.7034	750	950-1150	630	850-1000	510	750-900	-	-	-	-
$37 \mathrm{Cr} \mathrm{S4}$	1.7038	750	950-1150	630	850-1000	510	750-900	-	-	-	-
41 Cr 4	1.7035	800	1000-1200	660	900-1100	560	800-950	-	-	-	-
$41 \mathrm{Cr} \mathrm{S4}$	1.7039	800	1000-1200	660	900-1100	560	800-950	-	-	-	-
25 CrMo 4	1.7218	700	900-1100	600	800-950	450	700-850	400	650-800	-	-
34 CrMo 4	1.7220	800	1000-1200	650	900-1100	550	800-950	500	750-900	450	700-850
34 CrMo 54	1.7226	800	1000-1200	650	900-1100	550	800-950	500	750-900	450	700-850
42 CrMo 4	1.7225	900	1100-1300	750	1000-1200	650	900-1100	550	800-950	500	750-900
42 CrMo 54	1.7227	900	1100-1300	750	1000-1200	650	900-1100	550	800-950	500	750-900
50 CrMo 4	1.7228	900	1100-1300	780	1000-1200	700	900-1100	650	850-1000	550	800-950
36 CrNiMo 4	1.6511	900	1100-1300	800	1000-1200	700	900-1100	600	800-950	550	750-900
34 CrNiMo 6	1.6582	1000	1200-1400	900	1100-1300	800	1000-1200	700	900-1100	600	800-950
30 CrNiMo 6	1.6580	1050	1250-1450	1050	1250-1450	900	1100-1300	800	1000-1200	700	900-1100
50 CrV 4	1.8159	900	1100-1300	800	1000-1200	700	900-1100	650	850-1000	600	800-950
$30 \mathrm{CrMoV9}$	1.7707	1050	1250-1450	1020	1200-1450	900	1100-1300	800	1000-1200	700	900-1100

## Materials

Fatigue Strength Diagrams of
Quenched and Tempered Steels


b) Bending fatigue strength

Quenched and tempered steels not illustrated may be used as follows:

34 CrNiMo 6 like 30 CrNiMo 8 30 CrMoV 4 like 30 CrNiMo 8 42 CrMo 4 like 50 CrMo 4 36 CrNiMo 4 like 50 CrMo 4 50 CrV 4 like 50 CrMo 4
34 CrMo 4 like 41 Cr 4 28 Cr 4 like 46 Cr 2 C 45 like Ck 45 C 60 and C 50 lie approximately between Ck 45 and 46 Cr 2.
C 40, 32 Cr 2, C 35, C 30 and C 25 lie approximately between Ck 22 and Ck 45.

Loading type I: static
Loading type II: dynamic
Loading type III: alternating

## Materials

General-Purpose Structural Steels

General-purpose structural steels [Extract from DIN 17100 (1.80)]												
Steel grade		Treatment condition	Similar steel grades EURON. 25	Tensile strength $R_{m}$ in $\mathrm{N} / \mathrm{mm}^{2}$ for product thickness in mm			Upper yield point $\mathrm{R}_{\mathrm{eH}}$ in $\mathrm{N} / \mathrm{mm}^{2}$ (minimum) for product thickness in mm					
Symbol	Material no.			$<3$	$\begin{gathered} \geq 3 \\ \leq 100 \end{gathered}$		$\leq 16$	$\begin{aligned} & >16 \\ & \leq 40 \end{aligned}$	$\begin{aligned} & >40 \\ & \leq 63 \end{aligned}$	$\begin{aligned} & >63 \\ & \leq 80 \end{aligned}$	$\begin{aligned} & >80 \\ & \leq 100 \end{aligned}$	>100
St 33	1.0035	U, N	Fe 310-0	$\begin{gathered} 310 \ldots \\ 540 \end{gathered}$	290		185	$\begin{aligned} & 175 \\ & \text { 2) } \end{aligned}$	-	-	-	
$\begin{gathered} \text { St 37-2 } \\ \text { U St 37-2 } \end{gathered}$	$\begin{aligned} & 1.0037 \\ & 1.0036 \end{aligned}$	$\begin{aligned} & \mathrm{U}, \mathrm{~N} \\ & \mathrm{U}, \mathrm{~N} \end{aligned}$	$\mathrm{Fe} 3 \overline{-}-\mathrm{BFU}$				235	225	215	205	195	
$\begin{aligned} & \text { R St 37-2 } \\ & \text { St 37-3 } \end{aligned}$	$\begin{aligned} & 1.0038 \\ & 1.0116 \end{aligned}$	$\begin{gathered} \mathrm{U}, \mathrm{~N} \\ \mathrm{U} \\ \mathrm{~N} \end{gathered}$	Fe 360-BFN   Fe 360-C   Fe 360-D	510	470	을	235	225	215	215	215	
St 44-2   St 44-3   St 44-3	$\begin{aligned} & 1.0044 \\ & 1.0144 \end{aligned}$	$\begin{gathered} \mathrm{U}, \mathrm{~N} \\ \mathrm{U} \\ \mathrm{~N} \end{gathered}$	Fe 430-B   Fe 430-C   Fe 430-D	$\begin{gathered} 430 \ldots \\ 580 \end{gathered}$	$\begin{gathered} 410 \ldots \\ 540 \end{gathered}$		275	265	255	245	235	O   0   0   0   0   0   0
St 52-3	1.0570	U   N	Fe 510-C   Fe 510-D	$\begin{gathered} 510 \ldots \\ 680 \end{gathered}$	$\begin{gathered} 490 \ldots \\ 630 \end{gathered}$		355	345	335	325	315	
St 50-2	1.0050	U, N	Fe 490-2	$\begin{gathered} 490 \ldots \\ 660 \end{gathered}$	$\begin{gathered} 470 \ldots \\ 610 \end{gathered}$		295	285	275	265	255	
St 60-2	1.0060	U, N	Fe 590-2	$\begin{gathered} 590 \ldots \\ 770 \end{gathered}$	$\begin{gathered} 570 \ldots \\ 710 \end{gathered}$		335	325	315	305	295	
St 70-2	1.0070	U, N	Fe 690-2	$\begin{gathered} 690 \ldots \\ 900 \end{gathered}$	$\begin{gathered} 670 \ldots \\ 830 \end{gathered}$		365	355	345	335	325	

1) $N$ normalized; U hot-rolled, untreated
2) This value applies to thicknesses up to 25 mm only

## Materials

Fatigue Strength Diagrams of
General-Purpose Structural Steels

Fatigue strength diagrams of general-purpose structural steels, DIN 17100 (test piece diameter $\mathrm{d}=10 \mathrm{~mm}$ )

a) Tension/compression fatigue strength


b) Bending fatigue strength

Loading type I: static Loading type II: dynamic Loading type III: alternating

## Materials

## Case Hardening Steels

Case hardening steels; Quality specifications to DIN 17210 (12.69) from SI tables (2.1974) of VDEh								
Steel grade			For dia. 11		For dia. 30		For dia. 63	
Symbol	Material no.		Yield point $\mathrm{R}_{\mathrm{e}}$ $\mathrm{N} / \mathrm{mm}^{2}$ min.	Tensile strength $R_{m}$ $\mathrm{N} / \mathrm{mm}^{2}$	Yield point $\mathrm{R}_{\mathrm{e}}$ $\mathrm{N} / \mathrm{mm}^{2}$ min.	Tensile strength $R_{m}$ $\mathrm{N} / \mathrm{mm}^{2}$	Yield point $\mathrm{R}_{\mathrm{e}}$ $\mathrm{N} / \mathrm{mm}^{2}$ min.	Tensile strength $R_{m}$ $\mathrm{N} / \mathrm{mm}^{2}$
$\begin{gathered} \text { C } 10 \\ \text { Ck } 10 \end{gathered}$	$\begin{aligned} & 1.0301 \\ & 1.1121 \end{aligned}$		$\begin{aligned} & 390 \\ & 390 \end{aligned}$	$\begin{aligned} & 640-790 \\ & 640-790 \end{aligned}$	$\begin{aligned} & 295 \\ & 295 \end{aligned}$	$\begin{aligned} & 490-640 \\ & 490-640 \end{aligned}$	-	-
C 15   Ck 15   Cm 15	$\begin{aligned} & 1.0401 \\ & 1.1141 \\ & 1.1140 \end{aligned}$		$\begin{aligned} & 440 \\ & 440 \\ & 440 \end{aligned}$	$\begin{aligned} & 740-890 \\ & 740-890 \\ & 740-890 \end{aligned}$	$\begin{aligned} & 355 \\ & 355 \\ & 355 \end{aligned}$	$\begin{aligned} & 590-790 \\ & 590-790 \\ & 590-790 \end{aligned}$	-	-
15 Cr 13	1.7015		510	780-1030	440	690-890	-	
16 MnCr 5	1.7131		635	880-1180	590	780-1080	440	640-940
16 MnCrS 5	1.7139		635	880-1180	590	780-1080	440	640-940
20 MnCr 5	1.7147		735	1080-1380	685	980-1280	540	780-1080
$20 \mathrm{MnCrS5}$	1.7149		735	1080-1380	685	980-1280	540	780-1080
20 MoCr 4	1.7321		635	880-1180	590	780-1080	-	-
20 MoCrS 4	1.7323		635	880-1180	590	780-1080	-	-
25 MoCrS 4	1.7325		735	1080-1380	685	980-1280	-	-
25 MoCrS 4	1.7326		735	1080-1380	685	980-1280	-	-
15 CrNi 6	1.5919		685	960-1280	635	880-1180	540	780-1080
18 CrNi 8	1.5920		835	1230-1480	785	1180-1430	685	1080-1330
17 CrNiMo 6	1.6587		835	1180-1430	785	1080-1330	685	980-1280

1) Dependent on treatment, the Brinell hardness is different.

Treatment condition	Meaning
C	treated for shearing load
G	soft annealed
BF	treated for strength
BG	treated for ferrite/pearlite structure

## Materials

Fatigue Strength Diagrams of
Case Hardening Steels


## Materials

Cold Rolled Steel Strips for Springs
Cast Steels for General Engineering Purposes

Cold rolled steel strips for springs [Extract from DIN 17222 (8.79)]				
Steel grade		Comparable grade acc. to EURONORM 132	Degree of conformity ${ }^{1)}$	Tensile strength $\mathrm{R}_{\mathrm{m}}$   2)   $\mathrm{N} / \mathrm{mm}^{2}$ maximum
Symbol	Material no.			
$\begin{gathered} \text { C } 55 \\ \text { Ck } 55 \end{gathered}$	$\begin{aligned} & 1.0535 \\ & 1.1203 \end{aligned}$	$\begin{aligned} & 1 \text { CS } 55 \\ & 2 \text { CS } 55 \end{aligned}$	$\bigcirc$	610
$\begin{gathered} \text { C } 60 \\ \text { Ck } 60 \end{gathered}$	$\begin{aligned} & 1.0601 \\ & 1.1221 \end{aligned}$	$\begin{aligned} & 1 \text { CS } 60 \\ & 2 \text { CS } 60 \end{aligned}$	$\bigcirc$	620
$\begin{gathered} \text { C } 67 \\ \text { Ck } 67 \end{gathered}$	$\begin{aligned} & 1.0603 \\ & 1.1231 \end{aligned}$	$\begin{aligned} & 1 \text { CS } 67 \\ & 2 \text { CS } 67 \end{aligned}$	$\bigcirc$	640
$\begin{aligned} & \text { C } 75 \\ & \text { CK75 } \end{aligned}$	$\begin{aligned} & 1.0605 \\ & 1.1248 \end{aligned}$	$\begin{aligned} & 1 \text { CS } 75 \\ & 2 \text { CS } 75 \end{aligned}$	$\bigcirc$	640
Ck 85 CK 101	$\begin{aligned} & 1.1269 \\ & 1.1274 \end{aligned}$	$\begin{aligned} & 2 \text { CS } 85 \\ & \text { CS } 100 \end{aligned}$	$0$	$\begin{aligned} & 670 \\ & 690 \end{aligned}$
55 Si 7	1.0904	-	-	740
71 Si 7	1.5029	-	-	800
67 SiCr 5	1.7103	67 SiCr 5	$\bigcirc$	800
50 CrV 4	1.8159	50 CrV 4	-	740

1) $\boldsymbol{O}$ minor deviations
= substantial deviations
2) $R_{m}$ for cold rolled and soft-annealed condition; for strip thicknesses up to 3 mm

Cast steels for general engineering purposes [Extract from DIN 1681 (6.85)]							

The mechanical properties apply to specimens which are taken from test pieces with thicknesses up to 100 mm . Furthermore, the yield point values also apply to the casting itself, in so far as the wall thickness is $\leq 100 \mathrm{~mm}$.

1) Determined from three individual values each.

## Materials

Round Steel Wire for Springs

Round steel wire for springs [Extract from DIN 17223, Part 1 (12.84)]				
Grade of wire Diameter of wire mm	Tensile strength $R_{m}$ in $N / \mathrm{mm}^{2}$			
0.07	-	-	-	2800-3100
0.3	-	2370-2650	-	2660-2940
1	1720-1970	1980-2220	-	2230-2470
2	1520-1750	1760-1970	1980-2200	1980-2200
3	1410-1620	1630-1830	1840-2040	1840-2040
4	1320-1520	1530-1730	1740-1930	1740-1930
5	1260-1450	1460-1650	1660-1840	1660-1840
6	1210-1390	1400-1580	1590-1770	1590-1770
7	1160-1340	1350-1530	1540-1710	1540-1710
8	1120-1300	1310-1480	1490-1660	1490-1660
9	1090-1260	1270-1440	1450-1610	1450-1610
10	1060-1230	1240-1400	1410-1570	1410-1570
11	-	1210-1370	1380-1530	1380-1530
12	-	1180-1340	1350-1500	1350-1500
13	-	1160-1310	1320-1470	1320-1470
14	-	1130-1280	1290-1440	1290-1440
15	-	1110-1260	1270-1410	1270-1410
16	-	1090-1230	1240-1390	1240-1390
17	-	1070-1210	1220-1360	1220-1360
18	-	1050-1190	1200-1340	1200-1340
19	-	1030-1170	1180-1320	1180-1320
20	-	1020-1150	1160-1300	1160-1300

## Materials

Lamellar Graphite Cast Iron
Nodular Graphite Cast Iron

Lamellar graphite cast iron [Extract from DIN 1691 (5.85)]						
Grade Material		Wall thicknesses in mm		Tensile strength 1) $\mathrm{R}_{\mathrm{m}}$   $\mathrm{N} / \mathrm{mm}^{2}$	Brinell hardness   1)   HB 30	Compressive strength 2) $\sigma_{d B}$ $\mathrm{N} / \mathrm{mm}^{2}$
GG-10	0.6010	5	40	min. $100{ }^{2)}$	-	-
GG-15	0.6015	$\begin{aligned} & 10 \\ & 20 \\ & 40 \\ & 80 \end{aligned}$	$\begin{array}{r} 20 \\ 40 \\ 80 \\ 150 \end{array}$	$\begin{array}{r} 130 \\ 110 \\ 95 \\ 80 \end{array}$	$\begin{gathered} 225 \\ 205 \\ - \\ - \end{gathered}$	600
GG-20	0.6020	$\begin{aligned} & 10 \\ & 20 \\ & 40 \\ & 80 \end{aligned}$	$\begin{array}{r} 20 \\ 40 \\ 80 \\ 150 \end{array}$	$\begin{aligned} & 180 \\ & 155 \\ & 130 \\ & 115 \end{aligned}$	$\begin{gathered} 250 \\ 235 \\ - \\ - \end{gathered}$	720
GG-25	0.6025	$\begin{aligned} & 10 \\ & 20 \\ & 40 \\ & 80 \end{aligned}$	$\begin{array}{r} 20 \\ 40 \\ 80 \\ 150 \end{array}$	$\begin{aligned} & 225 \\ & 195 \\ & 170 \\ & 155 \end{aligned}$	$\begin{gathered} 265 \\ 250 \\ - \\ - \end{gathered}$	840
GG-30	0.6030	$\begin{aligned} & 10 \\ & 20 \\ & 40 \\ & 80 \end{aligned}$	$\begin{array}{r} 20 \\ 40 \\ 80 \\ 150 \end{array}$	$\begin{aligned} & 270 \\ & 240 \\ & 210 \\ & 195 \end{aligned}$	$\begin{aligned} & 285 \\ & 265 \end{aligned}$	960
GG-35	0.6035	$\begin{aligned} & 10 \\ & 20 \\ & 40 \\ & 80 \end{aligned}$	$\begin{array}{r} 20 \\ 40 \\ 80 \\ 150 \end{array}$	$\begin{aligned} & 315 \\ & 280 \\ & 250 \\ & 225 \end{aligned}$	$\begin{gathered} 285 \\ 275 \\ - \\ - \end{gathered}$	1080

The values apply to castings which are made in sand moulds or moulds with comparable heat diffusibility.

1) These values are reference values.
2) Values in the separately cast test piece with 30 mm diameter of the unfinished casting.

Nodular graphite cast iron [Extract from DIN 1693, Part 2 (10.77)]						
Properties in cast-on test pieces						
Grade   Material		Wall thickness of casting		Thickness of cast-on test piece mm	Tensile strength $\mathrm{R}_{\mathrm{m}}$ $\mathrm{N} / \mathrm{mm}^{2}$	$\begin{gathered} 0.2 \% \\ \text { proof stress } \\ R p_{0.2} \\ \mathrm{~N} / \mathrm{mm}^{2} \end{gathered}$
GGG-40.3	0.7043	from 30 above 60	up to 60 up to 200	$\begin{aligned} & 40 \\ & 70 \end{aligned}$	$\begin{aligned} & 390 \\ & 370 \end{aligned}$	$\begin{aligned} & 250 \\ & 240 \end{aligned}$
GGG-40	0.7040	from 30 above 60	up to 60 up to 200	$\begin{aligned} & 40 \\ & 70 \end{aligned}$	$\begin{aligned} & 390 \\ & 370 \end{aligned}$	$\begin{aligned} & 250 \\ & 240 \end{aligned}$
GGG-50	0.7050	from 30 above 60	up to 60 up to 200	$\begin{aligned} & 40 \\ & 70 \end{aligned}$	$\begin{aligned} & 450 \\ & 420 \end{aligned}$	$\begin{aligned} & 300 \\ & 290 \end{aligned}$
GGG-60	0.7060	from 30 above 60	up to 60 up to 200	$\begin{aligned} & 40 \\ & 70 \end{aligned}$	$\begin{aligned} & 600 \\ & 550 \end{aligned}$	$\begin{aligned} & 360 \\ & 340 \end{aligned}$
GGG-70	0.7070	from 30 above 60	up to 60 up to 200	$\begin{aligned} & 40 \\ & 70 \end{aligned}$	$\begin{aligned} & 700 \\ & 650 \end{aligned}$	$\begin{aligned} & 400 \\ & 380 \end{aligned}$

## Materials

Copper-Tin- and Copper-Zinc-Tin Casting Alloys
Copper-Aluminium Casting Alloys

Copper-tin- and copper-zinc-tin casting alloys [Extract from DIN 1705 (11.81)]				
Materia   Symbol	Number	Condition on delivery	$\begin{gathered} 0.2 \% \\ \text { proof stress 1) } \\ R_{\mathrm{p} 0.2} \\ \mathrm{~min} . \text { in } \mathrm{N} / \mathrm{mm}^{2} \end{gathered}$	$\begin{gathered} \text { Tensile strength } \\ \text { 1) } \\ R_{m} \\ \text { min. in } \mathrm{N} / \mathrm{mm}^{2} \end{gathered}$
G-CuSn 12 GZ-CuSn 12 GC-CuSn12	$\begin{aligned} & 2.1052 .01 \\ & 2.1052 .03 \\ & 2.1052 .04 \end{aligned}$	Sand-mould cast iron Centrifugally cast iron Continuously cast iron	$\begin{aligned} & 140 \\ & 150 \\ & 140 \end{aligned}$	$\begin{aligned} & 260 \\ & 280 \\ & 280 \end{aligned}$
G-CuSn 12 Ni GZ-CuSn 12 Ni GC-CuSn 12 Ni	$\begin{aligned} & 2.1060 .01 \\ & 2.1060 .03 \\ & 2.1060 .04 \end{aligned}$	Sand-mould cast iron Centrifugally cast iron Continuously cast iron	$\begin{aligned} & 160 \\ & 180 \\ & 170 \end{aligned}$	$\begin{aligned} & 280 \\ & 300 \\ & 300 \end{aligned}$
G-CuSn 12 Pb GZ-CuSn 12 Pb GC-CuSn 12 Pb	$\begin{aligned} & 2.1061 .01 \\ & 2.1061 .03 \\ & 2.1061 .04 \end{aligned}$	Sand-mould cast iron Centrifugally cast iron Continuously cast iron	$\begin{aligned} & 140 \\ & 150 \\ & 140 \end{aligned}$	$\begin{aligned} & 260 \\ & 280 \\ & 280 \end{aligned}$
G-CuSn 10	2.1050 .01	Sand-mould cast iron	130	270
G-CuSn 10 Zn	2,1086.01	Sand-mould cast iron	130	260
G-CuSn 7 ZnPb GZ-CuSn 7 ZnPb GC-CuSn 7 ZnPb	$\begin{aligned} & 2.1090 .01 \\ & 2.1090 .03 \\ & 2.1090 .04 \end{aligned}$	Sand-mould cast iron Centrifugally cast iron Continuously cast iron	$\begin{aligned} & 120 \\ & 130 \\ & 120 \end{aligned}$	$\begin{aligned} & 240 \\ & 270 \\ & 270 \end{aligned}$
G-CuSn 6 ZnNi	2.1093 .01	Sand-mould cast iron	140	270
G-CuSn 5 ZnPb	2.1096 .01	Sand-mould cast iron	90	220
G-CuSn 2 ZnPb	2.1098 .01	Sand-mould cast iron	90	210

1) Material properties in the test bar

Copper-aluminium casting alloys [Extract from DIN 1714 (11.81)]				
Materia   Symbol	Number	Condition on delivery	$\begin{gathered} 0.2 \% \\ \text { proof stress 1) } \\ R_{\mathrm{p} 0.2} \\ \min . \text { in } \mathrm{N} / \mathrm{mm}^{2} \end{gathered}$	Tensile strength 1) $\mathrm{R}_{\mathrm{m}}$   min . in $\mathrm{N} / \mathrm{mm}^{2}$
G-CuAl 10 Fe GK-CuAl 10 Fe GZ-CuAl 10 Fe	$\begin{aligned} & 2.0940 .01 \\ & 2.0940 .02 \\ & 2.0940 .03 \end{aligned}$	Sand-mould cast iron Chilled casting Centrifugally cast iron	$\begin{aligned} & 180 \\ & 200 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 500 \\ & 550 \\ & 550 \end{aligned}$
G-CuAl 9 Ni   GK-CuAl 9 Ni   GZ-CuAl 9 Ni	$\begin{aligned} & 2.0970 .01 \\ & 2.0970 .02 \\ & 2.0970 .03 \end{aligned}$	Sand-mould cast iron Chilled casting Centrifugally cast iron	$\begin{aligned} & 200 \\ & 230 \\ & 250 \end{aligned}$	$\begin{aligned} & 500 \\ & 530 \\ & 500 \end{aligned}$
G-CuAl 10 Ni GK-CuAl 10 Ni GZ-CuAl 10 Ni GC-CuAl 10 Ni		Sand-mould cast iron   Chilled casting Centrifugally cast iron Continuously cast iron	$\begin{aligned} & 270 \\ & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \\ & 700 \\ & 700 \end{aligned}$
G-CuAl 11 Ni GK-CuAl 11 Ni GZ-CuAl 11 Ni	$\begin{aligned} & 2.0980 .01 \\ & 2.0980 .02 \\ & 2.0980 .03 \end{aligned}$	Sand-mould cast iron Chilled casting Centrifugally cast iron	$\begin{aligned} & 320 \\ & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & 680 \\ & 680 \\ & 750 \end{aligned}$
G-CuAl 8 Mn GK-CuAl 8 Mn	$\begin{aligned} & \hline 2.0962 .01 \\ & 2.0962 .02 \\ & \hline \end{aligned}$	Sand-mould cast iron Chilled casting	$\begin{aligned} & 180 \\ & 200 \end{aligned}$	$\begin{aligned} & 440 \\ & 450 \end{aligned}$

[^0]
## Materials

Aluminium Casting Alloys

Aluminium casting alloys [Extract from DIN 1725 (2.86)]				
Materia   Symbol	Number	Casting method and condition on delivery	$\begin{gathered} 0.2 \text { proof stress } \\ \mathrm{R}_{\mathrm{p} 0.2} \\ \text { in } \mathrm{N} / \mathrm{mm}^{2} \end{gathered}$	Tensile strength $R_{m}$ in $\mathrm{N} / \mathrm{mm}^{2}$
G-AISi 12	3.2581 .01	Sand-mould cast iron as cast	70 up to 100	150 up to 200
G-AISi 12 g	3.2581 .44	Sand-mould cast iron annealed and quenched	70 up to 100	150 up to 200
GK-AISi 12	3.2581 .02	Chilled casting as cast	80 up to 110	170 up to 230
GK-AISi 12 g	3.2581 .45	Chilled casting annealed and quenched	80 up to 110	170 up to 230
G-AISi 10 Mg	3.2381 .01	Sand-mould cast iron as cast	80 up to 110	160 up to 210
G-AISi 10 Mg wa	3.2381 .61	Sand-mould cast iron temper-hardened	180 up to 260	220 up to 320
GK-AISi 10 Mg	3.2381 .02	Chilled casting as cast	90 up to 120	180 up to 240
$\begin{gathered} \text { GK-AISi } 10 \mathrm{Mg} \\ \text { wa } \end{gathered}$	3.2381 .62	Chilled casting temper-hardened	210 up to 280	240 up to 320
G-AISi 11	3.2211 .01	Sand-mould cast iron as cast	70 up to 100	150 up to 200
G-AISi 11 g	3.2211 .81	annealed	70 up to 100	150 up to 200
GK-AISi 11	3.2211 .02	Chilled casting as cast	80 up to 110	170 up to 230
GK-AlSi 11g	3.2211 .82	annealed	80 up to 110	170 up to 230
G-AISi 7 Mg wa	3.2371 .61	Sand-mould cast iron temper-hardened	190 up to 240	230 up to 310
GK-AISi 7 Mg wa	3.2371 .62	Chilled casting temper-hardened	200 up to 280	250 up to 340
GF-AISi 7 Mg wa	3.2371 .63	High-quality casting temper-hardened	200 up to 260	260 up to 320
G-AIMg 3 Si	3.3241 .01	Sand-mould cast iron as cast	80 up to 100	140 up to 190
G-AIMg 3 Si wa	3.3241 .61	Sand-mould cast iron temper-hardened	120 up to 160	200 up to 280
GK-AIMg 3 Si	3.3241 .02	Chilled casting as cast	80 up to 100	150 up to 200
GK-AIMg 3 Si wa	3.3241 .62	Chilled casting temper-hardened	120 up to 180	220 up to 300
GF-AIMg 3 Si wa	3.3241 .63	Chilled casting temper-hardened	120 up to 160	200 up to 280

## Materials

## Lead and Tin Casting Alloys for Babbit Sleeve Bearings

Lead and tin casting alloys for babbit sleeve bearings [Extract from DIN ISO 4381 (10.82)]

Grade   Material   Symbol		Brinell hardness 1)   HB 10/250/180			$0.2 \% ~ p r o o f ~ s t r e s s ~ 1) ~$   $R_{p} 0.2$ in N/mm ${ }^{2}$		
PbSb 15 SnAs	2.3390	18	15	14	39	37	25
PbSb 15 Sn 10	2.3391	21	16	14	43	32	30
PbSb 14 Sn 9 CuAs	2.3392	22	22	16	46	39	27
PbSb 10 Sn 6	2.3393	16	16	14	39	32	27
SnSb 12 Cu 6 Pb	2.3790	25	20	12	61	60	36
SnSb 8 Cu 4	2.3791	22	17	11	47	44	27
SnSb 8 Cu 4 Cd	2.3792	28	25	19	62	44	30

1) Material properties in the test bar

## Materials

Comparison of Tensile Strength and
Miscellaneous Hardness Values

Tensile strength	Vickers hard-	$\begin{gathered} \text { Brinell } \\ \text { hardness 2) } \end{gathered}$	Rockwell hardness				Tensile strength	Vickers hard-	$\begin{gathered} \text { Brinell } \\ \text { hardness 2) } \end{gathered}$	Rockwell hardness		
$\mathrm{N} / \mathrm{mm}^{2}$	(F>98N)	$0.102=\frac{\mathrm{F}}{\mathrm{D}^{2}}+30 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}$	HRB	HRC	HRA	$\begin{array}{\|c} \text { HRD } \\ 1) \end{array}$	$\mathrm{N} / \mathrm{mm}^{2}$	(F>98N)	$0.102=\frac{\mathrm{F}}{\mathrm{D}^{2}}+30 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}$	HRC	HRA	$\begin{array}{\|c\|} \hline \text { HRD } \\ 1) \end{array}$
255	80	76.0					1155	360	342	36.6	68.7	52.8
270	85	80.7	41.0				1190	370	352	37.7	69.2	53.6
285	90	85.5	48.0				1220	380	361	38.8	69.8	54.4
305	95	90.2	52.0				1255	390	371	39.8	70.3	55.3
320	100	95.0	56.2				1290	400	380	40.8	70.8	56.0
335	105	99.8					1320	410	390	41.8	71.4	56.8
350	110	105	62.3				1350	420	399	42.7	71.8	57.5
370	115	109					1385	430	409	43.6	72.3	58.2
385	120	114	66.7				1420	440	418	44.5	72.8	58.8
400	125	119					1455	450	428	45.3	73.3	59.4
415	130	124	71.2				1485	460	437	46.1	73.6	60.1
430	135	128					1520	470	447	46.9	74.1	60.7
450	140	133	75.0				1555	480	(456)	47.7	74.5	61.3
465	145	138					1595	490	(466)	48.4	74.9	61.6
480	150	143	78.7				1630	500	(475)	49.1	75.3	62.2
495	155	147					1665	510	(485)	49.8	75.7	62.9
510	160	152	81.7				1700	520	(494)	50.5	76.1	63.5
530	165	156					1740	530	(504)	51.1	76.4	63.9
545	170	162	85.0				1775	540	(513)	51.7	76.7	64.5
560	175	166					1810	550	(523)	52.3	77.0	64.8
575	180	171	87.1				1845	560	(532)	53.0	77.4	65.4
595	185	176					1880	570	(542)	53.6	77.8	65.8
610	190	181	89.5				1920	580	(551)	54.1	78.0	66.2
625	195	185					1955	590	(561)	54.7	78.4	66.7
640	200	190	91.5				1995	600	(570)	55.2	78.6	67.0
660	205	195	92.5				2030	610	(580)	55.7	78.9	67.5
675	210	199	93.5				2070	620	(589)	56.3	79.2	67.9
690	215	204	94.0				2105	630	(599)	56.8	79.5	68.3
705	220	209	95.0				2145	640	(608)	57.3	79.8	68.7
720	225	214	96.0				2180	650	(618)	57.8	80.0	69.0
740	230	219	96.7					660		58.3	80.3	69.4
755	235	223						670		58.8	80.6	69.8
770	240	228	98.1	20.3	60.7	40.3		680		59.2	80.8	70.1
785	245	233		21.3	61.2	41.1		690		59.7	81.1	70.5
800	250	238	99.5	22.2	61.6	41.7		700		60.1	81.3	70.8
820	255	242		23.1	62.0	42.2		720		61.0	81.8	71.5
835	260	247	(101)	24.0	62.4	43.1		740		61.8	82.2	72.1
850	265	252		24.8	62.7	43.7		760		62.5	82.6	72.6
865	270	257	(102)	25.6	63.1	44.3		780		63.3	83.0	73.3
880	275	261		26.4	63.5	44.9		800		64.0	83.4	73.8
900	280	266	(104)	27.1	63.8	45.3		820		64.7	83.8	74.3
915	285	271		27.8	64.2	46.0		840		65.3	84.1	74.8
930	290	276	(105)	28.5	64.5	46.5		860		65.9	84.4	75.3
950	295	280		29.2	64.8	47.1		880		66.4	84.7	75.7
965	300	285		29.8	65.2	47.5		900		67.0	85.0	76.1
995	310	295		31.0	65.8	48.4		920		67.5	85.3	76.5
1030	320	304		32.3	66.4	49.4		940		68.0	85.6	76.9
1060	330	314		33.3	67.0	50.2						
1095	340	323		34.4	67.6	51.1						
1125	350	333		35.5	68.1	51.9						

The figures in brackets are hardness values outside the domain of definition of standard hardness tes methods which, however, in practice are frequently used as approximate values. Furthermore, the Brinell hardness values in brackets apply only if the test was carried out with a carbide ball.

1) Internationally usual, e.g. ASTM E 18-74 (American Society for Testing and Materials) 2) Calculated from HB $=0.95 \mathrm{HV}$ (Vickers hardness)

Determination of Rockwell hardness HRA, HRB, HRC, and HRD acc. to DIN 50103 Part 1 and 2
Determination of Vickers hardness acc. to DIN 50133 Part 1
Determination of Brinell hardness acc. to DIN 50351
Determination of tensile strength acc. to DIN 50145

## Materials

Values of Solids and Liquids

Values of solids and liquids Mean density of the earth $=5.517 \mathrm{~g} / \mathrm{cm}^{3}$									
Substance (solid)	$\begin{aligned} & \text { Sym- } \\ & \text { bol } \end{aligned}$	$\begin{gathered} \underset{\pi}{D_{n s i t y}^{y}} \\ \mathrm{~g} / \mathrm{cm}^{3} \end{gathered}$		Thermal   conductivity   at $20^{\circ} \mathrm{C}$   W/(mK)	Substance (solid)	Sym- bol	$\begin{gathered} \operatorname{Density~}_{\pi} \\ \mathrm{g} / \mathrm{cm}^{3} \end{gathered}$	Melting point $\operatorname{tin}^{\circ} \mathrm{C}$	Thermal conductiat $20^{\circ} \mathrm{C}$ $\mathrm{W} /(\mathrm{mK})$
Agate		2.5...2.8	$\approx 1600$	11.20	Porcelain		2.2...2.5	$\approx 1650$	$\sim 1$
Aluminium	Al	2.7	658	204	Pyranite		3.3	1800	8.14
Aluminium bronze		7.7	1040	128	Quartz-flint		2.5...2.8	1480	9.89
Antimony	Sb	6.67	630	22.5	Radium	Ra	5	700	
Arsenic	As	5.72		-	Rhenium	Re	21	3175	71
Asbestos		$\approx 2.5$	$\approx 1300$		Rhodium	Rh	12.3	1960	88
Asphatum		1.7.1.1.5	80...100	0.698	Gunmetal (CuSn5ZnPb)		8.8	950	38   58
Barium	Ba	3.59	704		Rubidium	Rb	1.52	39	58
Barium chloride		3.1	960		Ruthenium	Ru	12.2	2300	106
Basalt, natural		2.7...3.2		1.67	Sand, dry		1.4...1.6	1480	0.58
Beryllium	Be	1.85	1280	1.65	Sandstone		2.1...2.5	$\approx 1500$	2.3
Concrete		$\stackrel{2}{ }$		$\sim 1$	Brick, fire		1.8...2.3	$\approx 2000$	$\approx 1.2$
Lead	Pb	11.3	327.4	34.7	Slate		2.6...2.7	$\approx 2000$	$\approx 0.5$
Boron (amorph.)	B	1.73	2300	-	Emery		,	2200	11.6
Borax		1.72	740	-	Sulphur, riombic	S	2.07	${ }^{112.8}$	0.27
Limonite		3.4..3.9	1565	-	Sulphur, monoclinic	S	1.96	119	0.13
Bronze (CuSn6)		8.83	970	64	Barytes		4.5	1580	
Chlorine calcium		2.2	774		Selenium, red	Se	4.4	220	0.2
Chromium	Cr	7.1	1800	69	Silver	${ }^{\text {Ag }}$	10.5	960	407
Chromium nickel (NiCr 8020)		7.4	1430	52.335	Silicon	Si	2.33	1420	83
Delta metal		8.6	950	104.7	Silicon carbide		3.12		15.2
Diamond	C	3.5			Sillimanite		2.4	1816	1.69
Iron, pure	Fe	7.86	1530	81	Soapstone (talcous)		2.7		3.26
Grease		0.92..0.94	30... 175	0.209	Steel, plain + low-alloy		7.9	1460	47...58
Gallium	Ga	5.9	29.75		stainless 18Cr8Ni		7.9	1450	14
Germanium	Ge	5.32	936	58.615	non-magnetic 15Ni7Mn		8	1450	16.28
Gypsum		2.3	1200	0.45	Tungsten steel 18 W		8.7	1450	26
Glass, window		$\approx 2.5$	$\approx 700$	0.81	Steanit		2.6...2.7	ح1520	1.63
Mica		$\approx 2.8$	$\approx 1300$	0.35	Hard coal		1.35		0.24
Gold	Au	19.29	1063	310	Strontium	Sr	2.54	797	0.23
Granite		2.6...2.8		3.5	Tantalum	Ta	16.6	2990	54
Graphite	C	2.24	$\approx 3800$	168	Tellurium	Te	6.25	455	4.9
Grey cast iron		7.25	1200	58	Thorium	Th	11.7	$\approx 1800$	38
Laminated fabric		1.3...1.42	-	$0.34 . .0 .35$	Titanium	Ti	4.5	1670	15.5
Hard rubber		$\approx 1.4$		0.17	Tombac		8.65	1000	159
Hard metal K20		14.8	2000	81	Uranium 99.99\%		1.8...2.6	1500.1700	0.93...1.28
Woods		$0.45 . .0 .85$	-	0.12...0.17	Uranium 99.99\%	U	18.7	1133	28
Indium	In	7.31	156	24	Vanadium	v	6.1	1890	31.4
Iridium	Ir	22.5	2450	59.3	Soft rubber		1...1.8	-	0.144...0.23
Cadmium	Cd	8.64	321	92.1	White metal		7.5...10.1	300...400	34.9..69.8
Potassium	K	0.86	63.6	110	Bismuth	Bi	9.8	271	8.1
Limestone		2.6		2.2	Wolfram	W	19.2	3410	130
Calcium	Ca	1.55	850	-	Cesium	Cs	1.87	29	
Calcium oxide (lime)		3.4	2572		Cement, hard		2...2.2		0.9...1.2
Caoutchouc, crude		0.95	125	0.2	Cerium	Ce	6.79	630	
Cobalt	Co	8.8	1490	69.4	Zinc	Zn	6.86	419	110
Salt, common		2.15	802		Tin	Sn	7.2	232	65
Coke		1.6..1.9		0.184	Zirconium	Zr	6.5	1850	22
Constantan		8.89	1600	23.3					
Corundum ( $\mathrm{AL}_{2} \mathrm{O}_{3}$ )		$3.9 . .4$	2050	12...23					
Chalk		1.8..2.6		0.92					
$\stackrel{\text { Copper }}{\text { Leather, dry }}$	Cu	${ }_{0}^{8.9 .9 .1}$	1083	384 0.15			Density	point	conducti-
Lithium	Li	0.53	179	71	Substance (liquid)	Sym-		1.013 MPa	at $20^{\circ} \mathrm{C}$
Magnesium	Mg	1.74	657	157			$\mathrm{g} /\left.\mathrm{cm}^{3}\right\|^{\text {at }}$	${ }^{\circ} \mathrm{C}$	W/(mk)
Magnesium, alloyed		1.8...1.83	650	69.8..145.4	Ether		0.7220	35	0.14
Manganese	Mn	7.43	1250	30	Benzine		$\approx 0.7315$	25... 210	0.13
Marble		2.6...2.8	1290	2.8	Benzole, pure		0.8315	80	0.14
Redlead oxide		8.6...9.1		0.7	Diesel oil		0.83 15	210...380	0.15
Brass (63Cu37Zn)		8.5	900	116	Glycerine		1.2620	290	0.29
Molybdenum	Mo	10.2	2600	145	Resin oil		0.9620	150..300	0.15
Monel metal		8.8	$\approx 1300$	19.7	Fuel oilEL		20.83 20	$>175$	0.14
Sodium	Na	0.98	97.5	126	Linseed oil		0.9320	316	0.17
Nickelsilver		8.7	1020	48	Machinery oil		0.9115	380...400	0.125
Nickel	Ni	8.9	1452	59	Methanol		0.815	65	0.21
Niobium	Nb	8.6	2415	54.43	Methyl chloride		0.9515	24	0.16
Osmium	Os	22.5	2500		Mineral oil		0.9120	> 360	0.13
Palladium	Pd	12	1552	70.9	Petroleum ether		0.6620	> 40	0.14
Paratfin		0.9	52	0.26	Petroleum		0.8120	$>150$	0.13
Pitch		1.25		0.13	Mercury	Hg	13.5520	357	10
Phosphorus (white)	P	1.83	44		Hydrochloric acid 10\%		1.0515	102	0.5
Platinum	Pt	21.5	1770	70	Sulphuric acid, strong		$1.84{ }^{15}$	338	0.47
Polyamide A, B		1.13	$\approx 250$	0.34	Silicon fluid		0.9420	-	0.22

## Materials

Coefficient of Linear Expansion; Iron-Carbon Diagram;
Fatigue Strength Values for Gear Materials

Coefficient of linear expansion $\alpha$	Coefficients of linear expansion of some substances at $0 . . .100{ }^{\circ} \mathrm{C}$	
The coefficient of linear expansion $\alpha$ gives the fractional expansion of the unit of length	Substance	$\alpha\left[10^{-6} / \mathrm{K}\right]$
rature. For the linear expansion of a body	Aluminium alloys	$21 . .24$
applies:	Grey cast iron (e.g. GG-20, GG-25)	10.5
$I+I_{0}=\mu=T$	Steel, plain and low-alloy	11.5
where	Steel, stainless   (18Cr 8Ni)	16
$\Delta \mathrm{l}$ : change of length	Steel, rapid machining steel	11.5
$\mathrm{l}_{\mathrm{o}}$ : original length	Copper	17
$\alpha$ : coefficient of linear expansion	Brass CuZn37	18.5
$\Delta \mathrm{T}$ : rise of temperature	Bronze CuSn8	17.5

Iron-carbon diagram


Pitting and tooth root fatigue strength of case hardening steels, DIN 17210

Symbol	Hardness on finished gear   HV1	$\sigma_{\text {Hlim }}$   $\mathrm{N} / \mathrm{mm}^{2}$	$\sigma_{\text {Flim }}$   $\mathrm{N} / \mathrm{mm}^{2}$
16 MnCr 5	720	1470	430
15 CrNi 6	730	1490	460
17 CrNiMo 6	740	1510	500

## Materials

Heat Treatment During Case Hardening
of Case Hardening Steels

Heat treatment during case hardening of case hardening steels acc. to DIN 17210		
Usual heat treatment during case hardening		
A. Direct hardening or double hardening	B. Single hardening	C. Hardening after isothermal transtormation
	Single hardening from core or case hardening temperature	
Direct hardening after lowering to hardening temperature	Single hardening after intermediate annealing (soft annealing) (d)	Hardening after isothermal transformation in the pearite stage (e) and cooling-down to room temperature
	a carburizing temperature   b hardening temperature   c tempering temperature   d intermediate annealing (soft ann   e transformation temperature in th	g) temperature rlite stage


Usual case hardening temperatures						
Grade of steel		a	b		Quenchant	c
Symbol	Material number	$\begin{gathered} \text { Carburizing } \\ \text { temperature } \\ \text { 1) } \\ { }^{\circ} \mathrm{C} \end{gathered}$	Core hardening temperature ${ }^{2)}$   ${ }^{\circ} \mathrm{C}$	Case hardening temperature ${ }^{2)}$ ${ }^{\circ} \mathrm{C}$		Tempering   ${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { C } 10 \\ & \text { Ck } 10 \\ & \text { Ck } 15 \\ & \text { Cm } 15 \end{aligned}$	$\begin{aligned} & 1.0301 \\ & 1.1121 \\ & 1.0401 \\ & 1.1141 \\ & 1.1140 \end{aligned}$	$\begin{aligned} & 880 \\ & \text { up to } \\ & 980 \end{aligned}$	$\begin{aligned} & 880 \\ & \text { up to } \\ & 920 \end{aligned}$	$\begin{aligned} & 780 \\ & \text { up to } \\ & 820 \end{aligned}$	With regard to theproperties of the component, the selection of the quenchant depends on the hardenability or casehardenability of the steel, the shape and work piece to be hardened, as well as on the effect of the quenchant.	$\begin{aligned} & 150 \\ & \text { up to } \\ & 200 \end{aligned}$
17 Cr 3   20 Cr 4   20 CrS 4   16 MnCr 5   16 MnCrS 5   20 MnCr 5   20 MnCrS 5   20 MoCr 4   20 MoCrS 4   22 CrMoS 35   21 NiCrMo 2   21 NiCrMoS 2   15 CrNi 6   17 CrNiMo 6	$\begin{aligned} & \hline 1.7016 \\ & 1.7027 \\ & 1.7028 \\ & 1.7131 \\ & 1.7139 \\ & 1.7147 \\ & 1.7149 \\ & 1.7321 \\ & 1.7323 \\ & 1.7333 \\ & 1.6523 \\ & 1.6526 \\ & \hline 1.5919 \\ & 1.6587 \end{aligned}$		860   up to   900   830   up to   870			

1) Decisive criteria for the determination of the carburizing temperature are mainly the required time of carburizing, the chosen carburizing agent, and the plant available, the provided course of process, as well as the required structural chosen carburizing agent, and the plant available, the provided course of process, as well as the required structural
constitution. For direct hardening, carburizing usually is carried out at temperatures below $950^{\circ} \mathrm{C}$. In special cases, carburizing temperatures up to above $1000^{\circ} \mathrm{C}$ are applied.
2) In case of direct hardening, quenching is carried out either from the carburizing temperature or any lower temperature. In particular if there is a risk of warping, lower hardening temperatures are preferred.
Lubricating Oils ..... Page
Viscosity-Temperature-Diagram for Mineral Oils ..... 100
Viscosity-Temperature-Diagram for Synthetic Oils of Polyglycole Base ..... 101
Viscosity-Temperature-Diagram for Synthetic Oils of Poly- $\alpha$-Olefine Base ..... 102
Kinematic Viscosity and Dynamic Viscosity ..... 103
Viscosity Table for Mineral Oils ..... 104


## Lubricating Oils

Viscosity-temperature-diagram for synthetic oils of polyglycole base


## Lubricating Oils

Kinematic Viscosity and Dynamic Viscosity
for Mineral Oils at any Temperature


Dynamic viscosity $\eta$	
$\eta=v \cdot \cdot 0.001$	(3)
$=15^{-(t-15)} \cdot 0.0007$	(4)
```t [ }\mp@subsup{}{}{\circ}\textrm{C}]: temperature 15 [kg/dm}\mp@subsup{}{}{3}]:\mathrm{ density at }15\mp@subsup{}{}{\circ}\textrm{C [kg/dm}\mp@subsup{}{}{3}]: density```	
v [cSt]: kinematic viscosity $\eta\left[\mathrm{Ns} / \mathrm{m}^{2}\right]$: dynamic viscosity	

Density							15 in $\mathrm{kg} / \mathrm{dm}^{3}$ of lubricating oils for gear units) (Example) ${ }^{2)}$
VG grade	$\mathbf{6 8}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$	$\mathbf{2 2 0}$	$\mathbf{3 2 0}$	$\mathbf{4 6 0}$	$\mathbf{6 8 0}$
ARAL Degol BG	0.890	0.890	0.895	0.895	0.900	0.900	0.905
ESSO Spartan EP	0.880	0.885	0.890	0.895	0.900	0.905	0.920
MOBIL OIL Mobilgear 626 ... 636	0.882	0.885	0.889	0.876	0.900	0.905	0.910
OPTIMOL Optigear BM	0.890	0.901	0.904	0.910	0.917	0.920	0.930
TRIBOL Tribol 1100	0.890	0.895	0.901	0.907	0.912	0.920	0.934
2) Mineral base gear oils in accordance with designation CLP as per DIN 51502. These oils comply							

2) Mineral base gear oils in accordance with designation CLP as per DIN 51502. These oils comply with the minimum requirements as specified in DIN 51517 Part 3 . They are suitable for operating temperatures from $-10^{\circ} \mathrm{C}$ up to $+90^{\circ} \mathrm{C}$ (briefly $+100^{\circ} \mathrm{C}$).

[^1]Cylindrical Gear Units
Symbols and Units
General Introduction

Geometry of Involute Gears

Concepts and Parameters Associated With Involute Teeth 108
Reference Profile 108
Module109
Tool Profile
Generating Tooth Flanks 110109
Concepts and Parameters Associated With Cylindrical Gears 111111
Pitch
Addendum Modification11
Concepts and Parameters Associated With a Cylindrical Gear Pair 113Mating Quantities113Mating Quantities
Contact Ratios 114
Summary of the Most Important Formulae 115-117
Gear Teeth Modifications 118/119
Load Carrying Capacity of Involute Gears
Scope of Application and Purpose
Scope of Application and Purpose
General Factors
Application Factor
Dynamic Factor
Face Load Factor
Transverse Load Factor
Transverse Load Factor
Effective Hertzian Pressure
Tooth Root Load Carrying Capac
Effective Tooth Root Stress
Permissible Tooth Root Stress
Safety Factors
Safety Factors
Calculation Exa
Gear Unit Types
Standard Designs
Load Sharing Gear Unit
Comparisons
Load Value
Referred Torques
Efficiencies

Example
 Example

Noise Emitted by Gear Units
Definitions
Measurements
Determination via Sound Pressure
Determination via Sound Intensity
Prediction
Possibilities of Influencing

a	mm	Centre distance	n	1/min	Speed
a_{d}	mm	Reference centre distance	p	$\mathrm{N} / \mathrm{mm}^{2}$	Sound pressure
b	mm	Facewidth	p	mm	Pitch on the reference circle
c_{p}	mm	Bottom clearance between standard basic rack tooth profile and counter profile	p_{bt}	mm	Pitch on the base circle
			p_{e}	mm	Normal base pitch
d	mm	Reference diameter	$p_{\text {en }}$	mm	Normal base pitch at a point
d_{a}	mm	Tip diameter	$p_{\text {et }}$	mm	Normal transverse pitch
d_{b}	mm	Base diameter	$p_{\text {ex }}$	mm	Axial pitch
d_{f}	mm	Root diameter	p_{t}	mm	Transverse base pitch, reference circle pitch
d_{w}	mm	Pitch diameter	prpo	mm	Protuberance value on the tool's standard basic rack tooth profile
e	mm	Spacewidth on the reference cylinder			
e_{p}	mm	Spacewidth on the standard basic rack tooth profile	q	mm	Machining allowance on the cylindrical gear tooth flanks
f	Hz	Frequency	r	mm	Reference circle radius, radius
g_{α}	mm	Length of path of contact			
h	mm	Tooth depth	ra_{a}	mm	Tip radius
$\mathrm{ha}_{\text {a }}$	mm	Addendum	$r_{\text {b }}$	mm	Base radius
$\mathrm{hap}^{\text {a }}$	mm	Addendum of the standard basic rack tooth profile	${ }^{\text {w }}$	mm	Radius of the working pitch circle
haPO	mm	Addendum of the tool's standard basic rack tooth profile	s	mm	Tooth thickness on the reference circle
hf_{f}	mm	Dedendum	San	mm	Tooth thickness on the tip circle
$\mathrm{h}_{\text {fP }}$	mm	Dedendum of the standard basic rack tooth profile	s_{p}	mm	Tooth thickness of the standard basic rack tooth profile
$\mathrm{h}_{\mathrm{fPO}}$	mm	Dedendum of the tool's standard basic rack tooth profile	SPO	mm	Tooth thickness of the tool's standard basic rack tooth profile
h_{p}	mm	Tooth depth of the standard			
h_{p}	mm	basic rack tooth profile	u	-	Gear ratio
h_{PO}	mm	Tooth depth of the tool's standard basic rack tooth profile	v	m/s	Circumferential speed on the reference circle
$\mathrm{h}_{\mathrm{prPO}}$	mm	Protuberance height of the tool's standard basic rack tooth profile	w	N/mm	Line load
			x	-	Addendum modification coefficient
h_{wP}	mm	Working depth of the standard basic rack tooth profile and the counter profile	x_{E}	-	Generating addendum modification coefficient
k	-	Tip diameter modification coefficient	z	-	Number of teeth
m	mm	Module	A	m^{2}	Gear teeth surface
m_{n}	mm	Normal module	$\mathrm{A}_{\text {s }}$	mm	Tooth thickness deviation
m_{t}	mm	Transverse module	B_{L}	$\mathrm{N} / \mathrm{mm}^{2}$	Load value

Symbols and units for cylindrical gear units

D	mm	Construction dimension
F_{n}	N	Load
F_{t}	N	Nominal peripheral force at the reference circle
G	kg	Gear unit weight
HV1	-	Vickers hardness at $F=9.81 \mathrm{~N}$
$\mathrm{K}_{\text {A }}$	-	Application factor
$\mathrm{K}_{\mathrm{F} \alpha}$	-	Transverse load factor (for tooth root stress)
$\mathrm{K}_{\mathrm{F} \beta}$	-	Face load factor (for tooth root stress)
$\mathrm{K}_{\mathrm{H} \alpha}$	-	Transverse load factor (for contact stress)
$\mathrm{K}_{\mathrm{H} \beta}$	-	Face load factor (for contact stress)
K_{v}	-	Dynamic factor
L_{pA}	dB	Sound pressure level A
LWA	dB	Sound power level A
P	kW	Nominal power rating of driven machine
R_{Z}	$\mu \mathrm{m}$	Mean peak-to-valley roughness
$S_{\text {F }}$	-	Factor of safety from tooth breakage
S_{H}	-	Factor of safety from pitting
S	m^{2}	Enveloping surface
T	Nm	Torque
V_{40}	mm²/s	Lubricating oil viscosity at $40^{\circ} \mathrm{C}$
Y_{β}	-	Helix angle factor
Yع	-	Contact ratio factor
Y_{FS}	-	Tip factor
Y_{R}	-	Roughness factor
Y_{X}	-	Size factor
Z_{β}	-	Helix angle factor
Z_{ε}	-	Contact ratio factor
Z_{H}	-	Zone factor
Z L	-	Lubricant factor
Z_{V}	-	Speed factor

Z_{X}	-	Size factor
α	Degree	Transverse pressure angle at a point; Pressure angle
\wedge	rad	Angle α in the circular measure ${ }^{\wedge}+\mu=180$
$\alpha_{\text {at }}$	Degree	Transverse pressure angle at the tip circle
α_{n}	Degree	Normal pressure angle
α_{P}	Degree	Pressure angle at a point of the standard basic rack tooth profile
$\alpha_{\text {PO }}$	Degree	Pressure angle at a point of the tool's standard basic rack tooth profile
$\alpha_{\text {prPO }}$	Degree	Protuberance pressure angle at a point
α_{t}	Degree	Transverse pressure angle at the reference circle
$\alpha_{\text {wt }}$	Degree	Working transverse pressure angle at the pitch circle
β	Degree	Helix angle at the reference circle
β_{b}	Degree	Base helix angle
ε_{α}	-	Transverse contact ratio
ε_{β}	-	Overlap ratio
ε_{γ}	-	Total contact ratio
η	-	Efficiency
ζ	Degree	Working angle of the involute
π	mm	Radius of curvature
π_{aPO}	mm	Tip radius of curvature of the tool's standard basic rack tooth profile
π_{fPO}	mm	Root radius of curvature of the tool's standard basic rack tooth profile
σ_{H}	$\mathrm{N} / \mathrm{mm}^{2}$	Effective Hertzian pressure
$\sigma_{\text {Hlim }}$	$\mathrm{N} / \mathrm{mm}^{2}$	Allowable stress number for contact stress
$\sigma_{\text {HP }}$	$\mathrm{N} / \mathrm{mm}^{2}$	Allowable Hertzian pressure
σ_{F}	$\mathrm{N} / \mathrm{mm}^{2}$	Effective tooth root stress
$\sigma_{\text {Flim }}$	$\mathrm{N} / \mathrm{mm}^{2}$	Bending stress number
$\sigma_{\text {FB }}$	$\mathrm{N} / \mathrm{mm}^{2}$	Allowable tooth root stress

Note: The unit rad may be replaced by 1 .

Cylindrical Gear Units

General Introduction
Geometry of Involute Gears

1. Cylindrical gear units

1.1 Introduction

In the industry, mainly gear units with case hardened and fine-machined gears are used for torque and speed adaptation of prime movers and driven machines. After carburising and hardening, the tooth flanks are fine-machined by hobbing or profile grinding or removing material (by means of shaping or generating tools coated with mechanically resistant material). In comparison with other gear units, which, for example, have quenched and tempered or nitrided gears, gear units with case hardened gears have higher power capacities, i.e. they require less space for the same speeds and torques. Further, gear units have the best efficiencies. Motion is transmitted without slip at constant speed. As a rule, an infinitely variable change-speed gear unit with primary or secondary gear stages presents the most economical solution even in case of variable speed control.
In industrial gear units mainly involute gears are used. Compared with other tooth profiles, the technical and economical
advantages are technical basically:

- Simple manufacture with straight-sided
flanked tools;
- The same tool for all numbers of teeth;
- Generating different tooth profiles and centre distances with the same number of teeth by means of the same tool by addendum modification;
- Uniform transmission of motion even in case of centre distance errors from the nominal value;
- The direction of the normal force of teeth remains constant during meshing;
- Advanced stage of development;
- Good availability on the market.

When load sharing gear units are used, output torques can be doubled or tripled in comparison
with gear units without load sharing. Load shar ing gear units mostly have one input and one output shaft. Inside the gear unit the load is distributed and then brought together again on the output shaft gear. The uniform sharing of the load between the individual branches is achieved by special design measures.

1.2 Geometry of involute gears

The most important concepts and parameters associated with cylindrical gears and cylindrical gear pairs with involute teeth in accordance with DIN 3960 are represented in sections 1.2.1 to 1.2.4. /1/

1.2.1 Concepts and parameters associated

 with involute teeth
1.2.1.1 Standard basic rack tooth profile

The standard basic rack tooth profile is the normal section through the teeth of the basic rack which is produced from an external gear tooth system with an infinitely large diameter and an infinitely large number of teeth. From figure 1 follows:

- The flanks of the standard basic rack tooth profile are straight lines and are located symmetrically below the pressure angle at a point α_{p} to the tooth centre line
- Between module m and pitch p the relation is $\mathrm{p}=\pi \mathrm{m}$;
- The nominal dimensions of tooth thickness and spacewidth on the datum line are equal i.e. $s_{p}=e_{p}=p / 2$.
- The bottom clearance c_{p} between basic rack tooth profile and counter profile is 0.1 m up to 0.4 m;
- The addendum is fixed by $h_{a P}=m$, the deden dum by $\mathrm{h}_{\mathrm{fP}}=\mathrm{m}+\mathrm{C}_{\mathrm{P}}$ and thus, the tooth depth by $h_{P}=2 m+c_{P}$;
- The working depth of basic rack tooth profile and counter profile is $h_{w P}=2 \mathrm{~m}$.

Figure 1 Basic rack tooth profiles for involute teeth of cylindrical gears (acc. to DIN 867)

Cylindrical Gear Units

Geometry of Involute Gears

1.2.1.2 Module

The module m of the standard basic rack tooth profile is the module in the normal section m_{n} of the gear teeth. For a helical gear with helix angle β on the reference circle, the transverse module
in a transverse section is $m_{t}=m_{n} / \cos \beta$. For a pur gear $\beta=0$ and the module is $m=m_{n}=m_{t}$ n order to limit the number of the required gear cutting tools, module m has been standardized in preferred series 1 and 2 , see table 1 .

Table 1 Selection of some modules m in mm (acc. to DIN 780)																		
Series 1	1	1.25	1.5	2	2.5	3	4		5	6	8		10	12	16	20	25	32
Series 2	1.75					3.5				7		9		14		18	22	28

1.2.1.3 Tool reference profile

The tool reference profile according to figure 2a is the counter profile of the standard basic rack tooth profile according to figure 1. For industrial gear units, the pressure angle at a point of the tool reference profile $\alpha_{\mathrm{PO}}=\alpha_{\mathrm{P}}$ is 20°, as a rule. The tooth thickness Spo of the tool on the tool datum line depends on the stage of machining. The pre-machining tool leaves on both flanks of the teeth a machining allowance q for finishmachining. Therefore, the tooth thickness for pre-machining tools is $\mathrm{Spo}^{2}<\mathrm{p} / 2$, and for finishmachining tools $\mathrm{SPO}=\mathrm{p} / 2$.
The pre-machining tool generates the root diameter and the fillet on a cylindrical gear. The finish-machining tool removes the machining allowance on the flanks, however, normally it does not touch the root circle - like on the tooth profile in figure 3a.
Between pre- and finish- machining, cylindrical gears are subjected to a heat treatment which, as a rule, leads to warping of the teeth and growing of the root and tip circles.

Especially for cylindrical gears with a relatively large number of teeth or a small module there is a risk of generating a notch in the root on finish machining. To avoid this, pre-machining tools are provided with protuberance flanks as shown in figure 2 b . They generate a root undercut on the gear, see figure 3b. On the tool, protuberance value prpo, protuberance pressure angle at a point $\alpha_{\text {prPO }}$, as well as the tip radius of curvature μ_{apo} must be so dimensioned that the active tooth profile on the gear will not be reduced and the tooth root will not be weakened too much. On cylindrical gears with small modules one of ten accepts on purpose a notch in the root if its distance to the root circle is large enough and thus the tooth root load carrying capacity is no impaired by a notch effect, figure 3c. In order to prevent the tip circle of the mating gear from touching the fillet it is necessary that a check for meshing interferences is carried out on the gear pair. /1/

Figure 2 Reference profiles of gear cutting tools for involute teeth of cylindrical gears a) For pre-machining and finish-machining b) For pre-machining with root undercut (protuberance)

Figure 3 Tooth profiles of cylindrical gears during pre- and finish-machining
a) Pre- and finish-machining down to the root circle
b) Pre-machining with root undercut (protuberance)
c) Finish-machining with notch

1.2.1.4 Generating tooth flanks

With the development of the envelope, an envelope line of the base cylinder with the base diameter d_{b} generates the involute surface of a spur gear.
A straight line inclined by a base helix angle β_{b} to the envelope line in the developed envelope is the generator of an involute surface (involute helicoid) of a helical gear, figure 4.
The involute which is always lying in a transverse section, figure 5 , is described by the transverse
pressure angle at a point α and radius r in the equations
inv $\alpha=\tan \alpha-$
$r=r_{b} / \cos \alpha$
(2)
$r_{b}=d_{b} / 2$ is the base radius. The angle inv α is termed involute function, and the angle
$\zeta={ }^{\wedge}+\operatorname{inv} \alpha=\tan \alpha$ is termed working angle.

Figure 4 Base cylinder with involute helicoid and generator

Cylindrical Gear Units

Geometry of Involute Gears

1.2.2 Concepts and parameters associated

with cylindrical gears

1.2.2.1 Geometric definitions

In figure 6 the most important geometric quantities of a cylindrical gear are shown.
The reference circle is the intersection of the reference cylinder with a plane of transverse section. When generating tooth flanks, the straight pitch line of the tool rolls off at the reference circle. Therefore, the reference circle periphery corresponds to the product of pitch p and number of teeth z, i.e. $\pi d=p z$. Since $m_{t}=p / \pi$, the equation for the reference diameter thus is $d=m_{t} z$. Many geometric quantities of the cylindrical gear are referred to the reference circle.
For a helical gear, at the point of intersection of the involute with the reference circle, the trans-

verse pressure angle at a point α in the trans verse section is termed transverse pressure angle α_{t}, see figures 5 and 7 . If a tangent line is put against the involute surface in the norma section at the point of intersection with the reference circle, the corresponding angle is termed normal pressure angle α_{n}; this is equal to tionship with the helix ongl β at the reference tionship whe here circle is $\tan \alpha_{n}=\cos \beta \tan \alpha_{t}$. On a spur gear α_{n} α_{t}.
Between the base helix angle β_{b} and the helix angle β on the reference circle the relationship is $\sin \beta_{b}=\cos \alpha_{n} \sin \beta$. The base diameter d_{b} is given by the reference diameter d , by $\mathrm{d}_{\mathrm{b}}=\mathrm{d} \cos \alpha_{\mathrm{t}}$. In the case of internal gears, the number of teeth z and thus also the diameters $\mathrm{d}, \mathrm{d}_{\mathrm{b}}, \mathrm{d}_{\mathrm{a}}, \mathrm{d}_{\mathrm{f}}$ are negative values.

Right flank

Tooth trace
Reference cylinder
Reference circle
d Reference diameter
d_{a} Tip diameter
d_{f} Root diameter
b Facewidth
h Tooth depth
h_{a} Addendum
h_{f} Dedendum
s Tooth thickness on the reference circle
e Spacewidth on the reference circle
p Pitch on the reference circle

Figure 6 Definitions on the cylindrical gear

1.2.2.2 Pitches

The pitch p_{t} of a helical gear (p in the case of a spur gear) lying in a transverse section is the ength of the reference circle arc between two uccessive right or left flanks, see figures 6 and 7 With the number of teeth z results $p_{1}=\pi d / z$. With the number of teeth z results $\mathrm{p}_{\mathrm{t}}=\pi \mathrm{d} / \mathrm{z}=$ $\pi \mathrm{m}_{\mathrm{t}}$.
The normal transverse pitch p_{et} of a helical gear is equal to the pitch on the basic circle $p_{b t}$, thus $\mathrm{p}_{\mathrm{et}}=\mathrm{p}_{\mathrm{bt}}=\pi \mathrm{d}_{\mathrm{b}} / \mathrm{z}$. Hence, in the normal section the normal base pitch at a point $p_{e n}=p_{\text {et }} \cos \beta_{b}$ is resulting from it, and in the axial section the axial pitch $\mathrm{p}_{\mathrm{ex}}=\mathrm{p}_{\mathrm{et}} / \tan \beta_{\mathrm{b}}$, see figure 13

Figure 7 Pitches in the transverse section of a helical gear

1.2.2.3 Addendum modification

When generating tooth flanks on a cylindrical gear by means of a tooth-rack-like tool (e.g. a hob), a straight pitch line parallel to the datum line of tool rolls on the reference circle. The distance $\left(x \cdot m_{n}\right)$ between the straight pitch line and he datum line of tool is the addendum modification, and x is the addendum modification coeflicient, see figure 8.
An addendum modification is positive, if the datum line of tool is displaced from the reference circle towards the tip, and it is negative if the datum The is displaced towards the root of the gear. This is true for both external and internal gears. In the case of inside. An addendum modification for to the inside. An addendum modification for external gears should be carried through approximately within the limits as shown in figure 9 . The addendum modification limits $x_{\min }$ and $x_{\max }$ are represented dependent on the virtual number of teeth $z_{n}=z /\left(\cos \beta \cos ^{2} \beta_{b}\right)$. The upper $l_{\text {mit }} x_{\text {max }}$ takes into account the intersection circle of the teeth and applies to a normal crest width in the normal section of $s_{a n}=0.25 \mathrm{~m}_{\mathrm{n}}$. When falling below the lower limit $x_{\text {min }}$ this results in an undercut which shortens the usable involute and weakens the tooth root.
A positive addendum modification results in a greater tooth root width and thus in an increase in the tooth root carrying capacity. In the case of small numbers of teeth this has a considerably stronger effect than in the case of larger ones. One mostly strives for a greater addendum modification on pinions than on gears in order to achieve equal tooth root carrying capacities for both gears, see figure 19.
Further criteria for the determination of addendum modification are contained in $/ 2 /, / 3 /$, and $/ 4 /$. The addendum modification coefficient x refers to gear teeth free of backlash and deviations. In order to take into account tooth thickness deviation A_{s} (for backlash and manufacturing tolerances) and machining allowances q (for premachining), one has to give the following generating addendum modification coefficient for the manufacture of a cylindrical gear:
$X_{E}=x+\frac{A_{S}}{2 m_{n} \tan \alpha_{n}}+\frac{q}{m_{n} \sin \alpha_{n}}$
(3)
(3)

Datum line of tool = straight pitch line
a)

Straight pitch line
b)

Datum line of tool
Straight pitch line
c)

Figure 8 Different positions of the datum line of tool in relation to the straight pitch line through pitch point C .
a) Zero addendum modification; $x=0$
b) Negative addendum modification; $x<0$ c) Positive addendum modification; $x>0$

Figure 9 Addendum modification limit $x_{\text {max }}$ (intersection circle) and $x_{\text {min }}$ (undercut limit) for external gears dependent on the virtual number of teeth zn (for internal gears, see /1/ and $/ 3 /$).

Cylindrical Gear Units

Geometry of Involute Gears

1.2.3 Concepts and parameters associated
 with a cylindrical gear pair

1.2.3.1 Terms

The mating of two external cylindrical gears (external gears) gives an external gear pair. In the case of a helical external gear pair one gear has left-handed and the other one right-handed flank direction.
The mating of an external cylindrical gear with an internal cylindrical gear (internal gear) gives an internal gear pair. In the case of a helical internal gear pair, both gears have the same flank direction, that is either right-handed or left-handed. The subscript 1 is used for the size of the smaller gear (pinion), and the subscript 2 for the larger gear (wheel or internal gear)
In the case of a zero gear pair both gears have as addendum modification coefficient $x_{1}=x_{2}=0$ (zero gears).
In the case of a V-zero gear pair, both gears have addendum modifications (V-gears), that is with $x_{1}+x_{2}=0$, i.e. $x_{1}=-x_{2}$.
For a V-gear pair, the sum is not equal to zero, i.e. $x_{1}+x_{2} \neq 0$. One of the cylindrical gears in this case may, however, have an addendum modification $x=0$.

1.2.3.2 Mating quantities

The gear ratio of a gear pair is the ratio of the number of teeth of the gear z_{2} to the number of teeth of the pinion z_{1}, thus $u=z_{2} / z_{1}$. Working pitch circles with diameter $d_{w}=2 r_{w}$ are those transverse intersection circles of a cylindrical gear pair, which have the same circumferential speed at their mutual contact point (pitch point C), figure 10. The working pitch circles divide the centre distance $a=r_{w 1}+r_{w 2}$ in the ratio of the tooth numbers, thus $\mathrm{d}_{\mathrm{w} 1}=2 \mathrm{a} /(\mathrm{u}+1)$ and $\mathrm{d}_{\mathrm{w} 2}=$ $2 \mathrm{a} u /(u+1)$.
In the case of both a zero gear pair and a V-zero gear pair, the centre distance is equal to the zero centre distance $a_{d}=\left(d_{1}+d_{2}\right) / 2$, and the pitch circles are simultaneously the reference circles, i.e. $d_{w}=d$. However, in the case of a V-gear pair the centre distance is not equal to the zero centre distance, and the pitch circles are not simultaneously the reference circles.
If in the case of V-gear pairs the bottom clearance c_{p} corresponding to the standard basic rack tooth profile is to be retained (which is not absolutely necessary), then an addendum modification is to be carried out. The addendum modification factor is $\mathrm{k}=\left(\mathrm{a}-\mathrm{a}_{\mathrm{d}}\right) / \mathrm{m}_{\mathrm{n}}-\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)$. For zero gear pairs and V-zero gear pairs $k=0$. In the case of external gear pairs $k<0$, i.e. the tip diameters of both gears become smaller. In the case of internal gear pairs $k>0$, i.e. the tip diameters of both gears become larger (on an internal gear with negative tip diameter the

Figure 10 Transverse section of an external gear pair with contacting left-handed flanks
absolute value becomes smaller)
In a cylindrical gear pair either the left or the righ lanks of the teeth contact each other on the line of action. Changing the flanks results in a line of action each lying symmetrical in relation to the centre line through $\mathrm{O}_{1} \mathrm{O}_{2}$. The line of action with contacting left flanks in figure 10 is the tangent to the two base circles at points T_{1} and T_{2}. With the common tangent on the pitch circles it includes the working pressure angle $\alpha_{w t}$.
The working pressure angle $\alpha_{w t}$ is the transverse pressure angle at a point belonging to the working pitch circle. According to figure 10 it is determined by $\cos \alpha_{w t}=d_{b 1} / d_{w 1}=d_{b 2} / d_{w 2}$. In the case of zero gear pairs and V-zero gear pairs, the working pressure angle is equal to the transverse pressure angle on the reference circle, i.e. $\alpha_{w t}=\alpha_{t}$.
The length of path of contact g_{α} is that part of the line of action which is limited by the two tip circles of the cylindrical gears, figure 11.
The starting point A of the length of path of contact is the point at which the line of action intersects the tip circle of the driven gear, and the finishing point E is the point at which the line of action intersects the tip circle of the driving gear

Cylindrical Gear Units

Geometry of Involute Gears

Cylindrical Gear Units

Geometry of Involute Gears

Figure 11 Length of path of contact $\overline{\mathrm{AE}}$ in the ransverse section of an external gear pair
A Starting point of engagement
Finishing point of engagement
C Pitch point

1.2.3.3 Contact ratios

The transverse contact ratio ε_{α} in the transvers section is the ratio of the length of path of contact g_{α} to the normal transverse pitch $p_{\text {et }}$, i.e. $\varepsilon_{\alpha}=g_{\alpha} / p_{\mathrm{et}}$, see figure 12
In case of spur gear pairs, the transvers contact ratio gives the average number of pair of the pair According to figure 12 the left hand tooth pair is in the individual point of contact D whil the right-hand tooth pair gets into mesh whe ctarting point of engair gets A The h hand tooth pair is in the individual point of hand too B when the left-hand tooth pair leave the mesh at the finishing point of engagemen E Along the individual longth of path of contact BD one tooth pair is in mesh, and along the BD one tooth pair is in mesh, and along the two pairs of teeth are simultaneously in mesh. In the case of helical gear pairs it is possibs he case of hear two pars it is poss the achieve that always two or more pars of teeth are in mesh simultaneously. The overlap ratio ε_{β} gives the contact ratio, owng to the helix of the teeth, as the ratio of the facewidth b to the axia pitch $p_{\text {ex }}$, i.e. $\varepsilon_{\beta}=b / p_{\text {ex }}$, see figure 13. The total contact ratio ε_{γ} is the sum of transverse contact ratio and overlap ratio, i.e $\varepsilon_{\gamma}=\varepsilon_{\alpha}+\varepsilon_{\beta}$.
W With
With an increasing total contact ratio, the load carrying capacity increases, as a rule, while the generation of noise is reduced.

Figure 12 Single and double contact region in the transverse section of an external gear pair
B, D Individual points of contact
A, E Starting and finishing point of engagement, respectively C Pitch point

Length of path of contact

Figure 13 Pitches in the plane of action
A Starting point of engagement
E Finishing point of engagement

1.2.4 Summary of the most important

 formulaeTables 2 and 3 contain the most important formulae for the determination of sizes of a cylindrical gear and a cylindrical gear pair, and this for both external and internal gear pairs.
The following rules for signs are to be observed In the case of internal gear pairs the number of eeth z_{2} of the internal gear is a negative quantity. Thus, alio centre distance a or a_{d} and gear ratio u as well as the diameters $d_{2}, d_{a 2}, d_{b 2}$ $d_{\mathrm{f} 2}, \mathrm{a}_{\mathrm{w} 2}$ and the negative
When designing a cylindrical gear pair for a gear stage, from the output quantities of tables 2 and 3 only the normal pressure angle α_{n} and the gear
ratio u are given, as a rule. The number of teeth of
the pinion is determined with regard to silen running and a balanced foot and flank load arrying capacity, at approx. $z_{1}=18 \ldots 23$. If igh foot load carrying capacity is required, the may be reduced to $z_{1}=10$. For the heix nonal $\beta=10$ up to 15 degree is given, in excepmodification limits as shown in figure 9 are to o observed On the pinion the addendum modi fication coefficient should be within the range o $x, 0.2$ to 0.6 and from lul >2 the width withi x_{1} range $b_{1}=(0.35$ to 0.45) a Centre distance is deng ${ }^{2}$ (0.35 ber ransmitted or by the constuctional conditions. transmitted or by the constructional conditions.

Cylindrical Gear Units

Geometry of Involute Gears

${ }^{*}$) For an internal gear, z is to be used as a negative quantity. ${ }^{* *}$) For inv α, see equation (1).

Cylindrical Gear Units

Geometry of Involute Gears

Table 3 Parameters for a cylindrical gear pair *)

Output quantities:

The parameters for pinion and wheel according to table 2 must be given, further the facewidths b_{1} and b_{2}, as well as either the centre distance a or the sum of the addendum modification coefficients $x_{1}+x_{2}$.

Item	Formula
Gear ratio	$u=\frac{z_{2}}{z_{1}}$
Working transverse pressure angle ("a" given)	$\cos \alpha_{w t}=\frac{m_{t}}{2 a}\left(z_{1}+z_{2}\right) \cos \alpha_{t}$
Sum of the addendum modification coefficients ("a" given)	$x_{1}+x_{2}=\frac{z_{1}+z_{2}}{2 \tan \alpha_{n}}\left(\text { inv } \alpha_{w t}-i n v \alpha_{t}\right)$
Working transverse pressure angle ($x_{1}+x_{2}$ given)	$\operatorname{inv} \alpha_{w t}=2 \frac{x_{1}+x_{2}}{z_{1}+z_{2}} \tan \alpha_{n}+\operatorname{inv} \alpha_{t}$
Centre distance ($\mathrm{x}_{1}+\mathrm{x}_{2}$ given)	$a=\frac{m_{t}}{2}\left(z_{1}+z_{2}\right) \frac{\cos \alpha_{t}}{\cos \alpha_{w t}}$
Reference centre distance	$a_{d}=\frac{m_{t}}{2}\left(z_{1}+z_{2}\right)$
Addendum modification factor **)	$\mathrm{k}=\frac{\mathrm{a}-\mathrm{a}_{\mathrm{d}}}{\mathrm{~m}_{\mathrm{n}}}-\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)$
Working pitch circle diameter of the pinion	$\mathrm{d}_{\mathrm{w} 1}=\frac{2 \mathrm{a}}{\mathrm{u}+1}=\mathrm{d}_{1} \frac{\cos \alpha_{\mathrm{t}}}{\cos \alpha_{\mathrm{wt}}}$
Working pitch circle diameter of the gear	$d_{w 2}=\frac{2 a u}{u+1}=d_{2} \frac{\cos \alpha_{t}}{\cos \alpha_{w t}}$
Length of path of contact	$g_{\alpha}=\frac{1}{2}\left(\sqrt{d_{\mathrm{a} 1}{ }^{2}-d_{\mathrm{b} 1^{2}}{ }^{2}}+\frac{\mathrm{u}}{\|\mathrm{u}\|} \sqrt{d_{\mathrm{a} 2}{ }^{2}-d_{\mathrm{b} 2}{ }^{2}}\right)-\mathrm{asin} \alpha_{\mathrm{wt}}$
Transverse contact ratio	$\varepsilon_{\alpha}=\frac{g_{\alpha}}{p_{\mathrm{et}}}$
Overlap ratio	$\varepsilon_{\beta}=\frac{b \tan \beta_{b}}{p_{e t}} \quad b=\min \left(b_{1}, b_{2}\right)$
Total contact ratio	$\varepsilon_{\gamma}=\varepsilon_{\alpha}+\varepsilon_{\beta}$

[^2]
1.2.5 Tooth corrections

The parameters given in the above subsections 1.2.1 to 1.2.4 refer to non-deviating cylindrica gears. Because of the high-tensile gear materi als, however, a high load utilization of the gear units is possible. Noticeable deformations of them elastic gear unit components result from it The defecion an thecturing form asrors. This a mul to me manufacturing form errors. This leads to meshing interferences at the entering and leaving sides, see figure 14. There is a negative effect on the load carrying capacity and generation of noise

Figure 14 Cylindrical gear pair under load 1 Driving gear 2 Driven gear
a, b Tooth pair being in engagement c, d Tooth pair getting into engagement

Further, the load causes bending and twisting of pinion and wheel shaft, pinion and wheel body, as well as settling of bearings, and housing deformations. This results in skewing of the tooth flanks which often amounts considerably higher than the tooth trace deviations caused by manufacture, see figure 15 . Non-uniform load carrying occurs along the face width which also has a negative effect on the load carrying capacity and generation of noise.
The running-in wear of case hardened gears amounts to a few micrometers only and cannot compensate the mentioned deviations. In order to restore the high load carrying capacity of case hardened gears and reduce the generation of noise, intentional deviations from the involute (profile correction) and from the theoretical tooth trace (longitudinal correction) are produced in order to attain nearly ideal geometries with uniform load distribution under load again.
The load-related form corrections are calculated and made for one load only - as a rule for 70 100% of the permanently acting nominal load /5, 6, 7/. At low partial load, contact patterns which do not cover the entire tooth depth and
facewidth are achieved. This has to be taken into consideration especially in the case of checks o contact patterns carried out under low loads. Un der partial load, however, the local maximum form load distribution under full load In the uni of modified gear teeth the contact ratio is reof modified gear teeth, the contact ratio is reduced under partiaload because of incomplete carrying portions, making the noise generating levels increase in the lower part load range. With increasing load, the carrying portions and thus the contact ratio increase so that the generating levels drop. Gear pairs which are only slightly loaded do not require any modification.

Figure 15 Deformations and manufacturing deviations on a gear unit shaft

In figure 16, usual profile and longitudinal correc tions are illustrated. In the case of profile correction, the flanks on pinion and wheel are relieved at the tips by an amount equal to the length they are protruding at the entering and leaving sides due to the bending deflection of the teeth. Root relief may be applied instead of tip relief which, however, is much more expensive. Thus, a gradual load increase is achieved on the tooth get-

Cylindrical Gear Units

Geometry of Involute Gears
Load Carrying Capacity of Involute Gears
ting into engagement, and a load reduction on the tooth leaving the engagement. In the case o is superposed by a symmetric longitudinal is superposed by a symmetric longitudinal
crowning. With it, uniform load carrying along the face width and a reduction in load concentration at the tooth ends during axial displacements is attained.

Longitudinal correction

Figure 16
Tooth corrections designed for removing local load increases due to deformations under nominal load

1.3 Load carrying capacity of involute gears

 1.3.1 Scope of application and purpose The calculation of the load carrying capacity of cylindrical gears is generally carried out in accordance with the calculation method according to DIN 3990 /8/ (identical with ISO 6336) which takes into account pitting, tooth root bending stress and scoring as load carrying limits. Because of the relatively large scope of standards, the calculation in accordance with this method may be carried out only by using EDP programs. As a rule, gear unit manufacturers have such a tool at hand. The standard work is the FVA-Stirnradprogramm /9/ which include further calculation methods, for instance, according to Niemann, AGMA, British Standard, and other.In DIN 3990, different methods A, B, C ... are suggested for the determination of individual factors, where method A is more exact but also more time-consuming than method B, etc. The application standard /10/ according to DIN 3990 is based on simplified methods.
Because of its - even though limited - universal validity it still is relatively time-consuming.
The following calculation method for pitting resistance and tooth strength of case-hardened cylindrical gears is a further simplification if compared with the application standard, wever, without losing some of its meaning Certain conditions must be adhered to in order attain high load carrying capacities which also results in preventing scufring. Therefore, a calculation not will not be considered in the following.

It has to be expressly emphasized that for the load carrying capacity of gear units the exac calculation method - compared with the simplified one - is always more meaningful and therefore is exclusively decisive in borderline cases.
Design, selection of material, manufacture, heat treatment and operation of industrial gear units are subject to certain rules which lead to a long service life of the cylindrical gears. Those rules are:

- Gear teeth geometry acc. to DIN 3960;
- Cylindrical gears out of case-hardened steel; Tooth flanks in DIN quality 6 or better, fine machined;
- Quality of material and heat treatment proved by quality inspections acc. to DIN 3990 /11/;
- Effective case depth after carburizing accord ing to instructions $/ 12$ / with surface hardnes ses of 58.62 HRC
- Gears with required tooth corrections and without harmful notches in the tooth root;
- Gear unit designed for fatigue strength, i.e. life factors $Z_{N T}=Y_{N T}=1.0$;
- Flank fatigue strength $\sigma_{\mathrm{Hlim}} \geqq 1,200 \mathrm{~N} / \mathrm{mm}^{2}$
- Subcritical operating range, i.e. pitch circle velocity lower than approx. $35 \mathrm{~m} / \mathrm{s}$;
- Sufficient supply of lubricating oil;
- Use of prescribed gear oils with sufficient scuffing load capacity (criteria stage ≥ 12) and grey staining load capacity (criteria stage ≥ 10);
- Maximum operating temperature $95^{\circ} \mathrm{C}$.

Cylindrical Gear Units

Load Carrying Capacity of Involute Gears

	1.3.2 Basic details
can be definitely given for the calculation of	The calculation of the load carrying capacity is
load carrying capacity according to DIN	based on the nominal torque of the driven ma
90, so that the calculation procedure is partly	chine. Alternatively, one can also start from the
nsiderably simplified. Non-observance of the	nominal torque of the prime mover if this co
e requirements, however, does not neces-	sponds with the torque requirement of the drive
mean that the load carrying capacity is re	machine.
d. In case of doubt one should, however,	In order to be able to carry out the calculation
y out the calculation in accordance with the	a cylindrical gear stage, the details listed in table
exact method.	4 must be given in the units mentioned in
	table. The geometric quantities are calcula
	according to tables 2 and 3 . Usually, they a
	contained in the workshop drawings for cylind

Abbreviation	Meaning	Unit
P	Power rating	kW
n_{1}	Pinion speed	1/min
a	Centre distance	mm
m_{n}	Normal module	mm
$d_{\text {a }}$	Tip diameter of the pinion	mm
$\mathrm{d}_{\mathrm{a} 2}$	Tip diameter of the wheel	mm
b_{1}	Facewidth of the pinion	mm
b_{2}	Facewidth of the wheel	mm
z_{1}	Number of teeth of the pinion	-
z_{2}	Number of teeth of the wheel	-
x_{1}	Addendum modification coefficient of the pinion	-
x_{2}	Addendum modification coefficient of the wheel	-
α_{n}	Normal pressure angle	Degree
β	Reference helix angle	Degree
V_{40}	Kinematic viscosity of lubricating oil at $40^{\circ} \mathrm{C}$	cSt
$\mathrm{R}_{\mathrm{z} 1}$	Peak-to-valley height on pinion flank	$\mu \mathrm{m}$
$\mathrm{R}_{\mathrm{z} 2}$	Peak-to-valley height on wheel flank	$\mu \mathrm{m}$

Cylindrical Gear Units

Load Carrying Capacity of Involute Gears

In the further course of the calculation, the quantities listed in table 5 are required. They are derived from the basic details according to table 4 .

Table 5 Derived quantities		Relation
Designation	$u=z_{2} / z_{1}$	Unit
Gear ratio	$d_{1}=z_{1} m_{n} / \cos \beta$	-
Reference diameter of the pinion	$F_{t}=19.1 \cdot 10^{6} P /\left(d_{1} n_{1}\right)$	mm
Transverse tangential force at pinion reference circle	$\beta_{b}=d_{1} n_{1} / 60000$	$\mathrm{arc} \sin \left(\cos \alpha_{n} \sin \beta\right)$

Cylindrical Gear Units

Load Carrying Capacity of Involute Gears

1.3.3 General factors

1.3.3.1 Application facto

With the application factor K_{A}, all additional forces acting on the gears from external sources are taken into consideration. It is dependent on chines, as well as the couplings, the masses and tiffness of the system, and the operating conditions.

The application factor is determined by the service classification of the individual gear. If possible, the factor K_{A} should be determined by means of a careful measurement or a comprehensive analysis of the system. Since very often it is not possible to carry out the one or other method without great expenditure, reference values are given in table 6 which equally apply to
all gears in a gear unit. all gears in a gear unit

Table 6 Application factor K_{A}					
Working mode of prime mover	Working mode of the driven machine				
	Uniform	Moderate shock loads	Average shock loads	Heavy shock loads	
Uniform	1.00	1.25	1.50	1.75	
Moderate shock loads	1.10	1.35	1.60	1.85	
Average shock loads	1.25	1.50	1.75	2.00 or higher	
Heavy shock loads	1.50	1.75	2.00	2.25 or higher	

1.3.3.2 Dynamic facto

With the dynamic factor K_{V}, additional dynamic forces caused in the meshing itself are taken into consideration. Taking $\mathrm{z}_{1}, \mathrm{v}$ and u from tables 4 and 5 , it is calculated from

$$
\begin{equation*}
K_{v}=1+0.0003 z_{1} v \sqrt{\frac{u^{2}}{1+u^{2}}} \tag{4}
\end{equation*}
$$

1.3.3.3 Face load factor

The face load factor $K_{H \beta}$ takes into account the increase in the load on the tooth flanks caused by non-uniform load distribution over the facewidth. According to /8/, it can be determined by means of different methods. Exact methods based on comprehensive measurements or calculations or on a combination of both are very expensive. Simple methods, however, are not exact, as a consequence of which estimations made to be on the safe side mostly result in higher factors. For normal cylindrical gear teeth without longitudinal correction, the face load factor can be calculated according to method D in accordance with /8/ dependent on facewidth b and reference diameter d_{1} of the pinion, as follows:
$K_{H \beta}=1.15+0.18\left(b / d_{1}\right)^{2}+0.0003 b$
with $b=\min \left(b_{1}, b_{2}\right)$. As a rule, the gear unit manufacturer carries out an analysis of the load distribution over the facewidth in accordance with an exact calculation method $/ 13$ /. If required, he makes longitudinal corrections in order to
attain uniform load carrying over the facewidth see subsection 1.2.5. Under such conditions, the face load factor lies within the range of $\mathrm{K}_{H \beta}=1$.1 ... 1.25. As a rough rule applies: A sensibly selected crowning symmetrical in length reduces the amount of $\mathrm{K}_{\mathrm{H} \beta}$ lying above 1.0 by approx. 40 to 50%, and a directly made longitudinal correc tion by approx. 60 to 70%.
In the case of slim shafts with gears arranged on one side, or in the case of lateral forces or moments acting on the shafts from external sources, for the face load factors for gears without longitudinal correction the values may lie between 1.5 and 2.0 and in extreme cases even at 2.5.
Face load factor $\mathrm{K}_{\mathrm{F} \beta}$ for the determination of in creased tooth root stress can approximately be deduced from face load factor $\mathrm{K}_{\mathrm{H} \beta}$ according to the relation
$\mathrm{K}_{\mathrm{F} \beta}=\left(\mathrm{K}_{\mathrm{H} \beta}\right)^{0.9}$
1.3.3.4 Transverse load factors

The transverse load factors $\mathrm{K}_{\mathrm{H} \alpha}$ and $\mathrm{K}_{\mathrm{F} \alpha}$ take into account the effect of the non-uniform distribution of load between several pairs of simultaneously contacting gear teeth. Under the condi tions as laid down in subsection 1.3.1, the result for surface stress and for tooth root stress according to method B in accordance with $/ 8 /$ is
$\mathrm{K}_{\mathrm{H} \alpha}=\mathrm{K}_{\mathrm{F} \alpha}=1.0$
1.3.4 Tooth flank load carrying capacity

The calculation of surface durability against pitting is based on the Hertzian pressure at the pitch circle. For pinion and wheel the same etective Hert the permissible Hertzian pressure σ, ceed the permissible Hertzian pressure $\sigma_{H p}$, i.e. $\sigma_{H}+\sigma_{H p}$.

$$
\sigma_{H}=Z_{E} \quad Z_{H} Z_{\beta} Z_{\varepsilon} \sqrt{K_{A} K_{v} K_{H \alpha} K_{H \beta} \frac{u+1}{u} \frac{F_{t}}{d_{1} b}}
$$

$\sigma_{\mathrm{H}} \quad$ Effective Hertzian pressure in $\mathrm{N} / \mathrm{mm}^{2}$ Further:
$b \quad$ is the smallest facewidth b_{1} or b_{2} of pinion or wheel acc. to table 4
F_{t}, u, d_{1} acc. to table 5
$\mathrm{K}_{\mathrm{A}} \quad$ Application factor acc. to table 6
$\mathrm{K}_{V} \quad$ Dynamic factor acc. to equation (4)
$\mathrm{K}_{\mathrm{H} \beta}$ Face load factor acc. to equ. (5)
$\mathrm{K}_{\mathrm{H} \alpha}$ Transverse load factor acc. to equ. (7)
$Z_{E} \quad$ Elasticity factor; $Z_{E}=190 \sqrt{\mathrm{~N} / \mathrm{mm}^{2}}$
for gears out of steel
$Z_{H} \quad$ Zone factor acc. to figure 17
$Z_{\beta} \quad$ Helix angle factor acc. to equ. (9)
$Z_{\varepsilon} \quad$ Contact ratio factor acc. to equ. (10) or (11)

With $ß$ according to table 4 applies:

$$
\begin{equation*}
z_{\beta}=\sqrt{\cos \beta} \tag{9}
\end{equation*}
$$

With ε_{α} and ε_{β} according to table 5 applies:

$$
Z_{\varepsilon}=\sqrt{\frac{4-\varepsilon_{\alpha}}{3}\left(1-\varepsilon_{\alpha}\right)+\frac{\varepsilon_{\beta}}{\varepsilon_{\alpha}}} \text { for } \varepsilon_{\beta}<1
$$

$$
\begin{equation*}
Z_{\varepsilon}=\sqrt{\frac{1}{\varepsilon_{\alpha}}} \quad \text { for } \varepsilon_{\beta}=1 \tag{11}
\end{equation*}
$$

1.3.4.2 Permissible Hertzian pressure

The permissible Hertzian pressure is determined by

$$
\sigma_{H P}=Z_{L} \quad Z_{V} \quad Z_{X} \quad Z_{R} Z_{W} \frac{\sigma_{H l i m}}{S_{H}}
$$

σ_{HP} permissible Hertzian pressure in $\mathrm{N} / \mathrm{mm}^{2}$. It is of different size for pinion and wheel if the strengths of materials $\sigma_{\text {Hlim }}$ are different. Factors

1.3.4.1 Effective Hertzian pressure

The effective Hertzian pressure is dependent on the load, and for pinion and wheel is equally de rived from the equation

Figure 17

Zone factor Z_{H} depending on helix angle β as well as on the numbers of teeth z_{1}, z_{2}, and addendum modification coefficients $\mathrm{x}_{1}, \mathrm{x}_{2}$; see table 4
$Z_{L}, Z_{V}, Z_{R}, Z_{W}$ and Z_{X} are the same for pinion and wheel and are determined in the following.

The lubricant factor is computed from the lubricating oil viscosity V_{40} according to table 4 using the following formula:

$$
\begin{equation*}
\mathrm{Z}_{\mathrm{L}}=0.91+\frac{0.25}{\left(1+\frac{112}{\mathrm{~V}_{40}}\right)^{2}} \tag{13}
\end{equation*}
$$

Cylindrical Gear Units

Load Carrying Capacity of Involute Gears

For the speed factor, the following applies using the circumferential speed v according to table 5

$$
\begin{equation*}
\mathrm{Z}_{\mathrm{v}}=0.93+\frac{0.157}{\sqrt{1+\frac{40}{\mathrm{v}}}} \tag{14}
\end{equation*}
$$

The roughness factor can be determined as a unction of the mean peak-to-valley height $\mathrm{R}_{\mathrm{Z}}=$ $\left(R_{Z 1}+R_{Z 2}\right) / 2$ of the gear pair as well as the gear ratio u and the reference diameter d_{1} of the pinion, see tables 4 and 5 , from

$$
\begin{equation*}
Z_{R}=\left[\frac{0.513}{R_{z}} \sqrt[3]{(1+|u|) d_{1}}\right]^{0.08} \tag{15}
\end{equation*}
$$

For a gear pair with the same tooth flank hardness on pinion and wheel, the work hardening factor is

$$
\begin{equation*}
Z_{W}=1.0 \tag{16}
\end{equation*}
$$

The size factor is computed from module m_{n} according to table 4 using the following formula:

$$
Z_{X}=1.05-0.005 m_{n}
$$

with the restriction $0.9 \leqq Z_{X} \leqq 1$.
$\sigma_{\text {Hlim }}$ Endurance strength of the gear material. For gears made out of case hardening seel, case hardened, figure 18 shows ing on the surface hardness of the tooth flanks and the quality of the material Under flanks and the qualty of the in subsection 1.3 material quality MQ may be selion 1.3.1, material qualis ma may be selected
S_{H} required safety factor against pitting, see subsection 1.3.6.

1.3.5 Tooth strength

The maximum load in the root fillet at the 30 -degree tangent is the basis for rating the tooth strength. For pinion and wheel it shall be show separately hat the effective tooth root stress σ_{F} does not exceed the permissible tooth root stres $\sigma_{F P}$, i.e. $\sigma_{F}<\sigma_{F P}$

Figure 18

Allowable stress number for contact stress $\sigma_{\text {Hlim }}$ of alloyed case hardening steels, case hardened, depending on the surface hardness HV1 of the tooth flanks and the material quality.
ML modest demands on the material quality MQ normal demands on the material quality ME high demands on the material quality, see /11/

1.3.5.1 Effective tooth root stress

As a rule, the load-dependent tooth root stresses for pinion and wheel are different. They are calculated from the following equation:
$\sigma_{F}=Y_{\varepsilon} Y_{\beta} Y_{F S} K_{A} K_{v} K_{F \alpha} K_{F \beta} \frac{F_{t}}{b m_{n}}$
σ_{F} Effective tooth root stress in $\mathrm{N} / \mathrm{mm}^{2}$
The following factors are of equal size for pinion and wheel:
m_{n}, F_{t} acc. to tables 4 and 5
$\mathrm{K}_{\mathrm{A}} \quad$ Application factor acc. to table 6
$\mathrm{K}_{\mathrm{V}} \quad$ Dynamic factor acc. to equation (4)
$\mathrm{K}_{F \beta} \quad$ Face load factor acc. to equation (6)
$\mathrm{K}_{\mathrm{F} \alpha} \quad$ Transverse load factor acc. to equ. (7) $Y_{\varepsilon} \quad$ Contact ratio factor acc. to equ. (19) $Y_{\beta} \quad$ Helix angle factor acc. to equ. (20)

The following factors are of different size for pinion and wheel:
b_{1}, b_{2} Facewidths of pinion and wheel acc. to table 4. If the facewidths of pinion and wheel are different, it may be assumed that the load bearing width of the wider facewidth is equal to the smaller facewidth plus such extension of the wider that does not exceed one times the module at each end of the teeth.

Cylindrical Gear Units

Figure 19
Tip factor $Y_{F S}$ for external gears with standard basic rack tooth profile acc. to DIN 867 depending on the number of teeth z (or z_{n} in case of helical gears) and addendum modification coefficient x, see tables 4 and 5 . The following only approximately applies to internal gears: $Y_{F S}=Y_{F S_{\infty}}(\approx$ value for $x=1.0$ and $z=300)$.

Cylindrical Gear Units

Load Carrying Capacity of Involute Gears
$\mathrm{Y}_{\text {FS1 }}, \mathrm{Y}_{\text {FS2 }}$ Tip factors acc. to figure 19. They account for the complex stress condi tion inclusive of the notch effect in the root fillet.
With the helix angle β acc. to table 4 and the overlap ratio ε_{β} acc. to table 5 follows:
$Y \varepsilon=0.25+\frac{0.75}{\varepsilon_{\alpha}} \quad \cos ^{2} \beta$
with the restriction $0.625+Y_{\varepsilon}+1$
$Y_{\beta}=1-\frac{\varepsilon_{\beta} \beta}{120} \quad$ (20)
with the restriction
$Y_{\beta}=\max \left[\left(1-0.25 \varepsilon_{\beta}\right) ;(1-\beta / 120)\right]$.
1.3.5.2 Permissible tooth root stress

The permissible tooth root stress for pinion and wheel is determined by

$$
\sigma_{\mathrm{FP}}=\mathrm{Y}_{\mathrm{ST}} \mathrm{Y}_{\text {drelT }} \mathrm{Y}_{\text {RrelT }} \mathrm{Y}_{\mathrm{X}} \frac{\sigma_{\text {Flim }}}{\left(\mathrm{S}_{\mathrm{F}}\right)}
$$

$\sigma_{F P}$ permissible tooth root stress in $\mathrm{N} / \mathrm{mm}^{2}$. It is not equal for pinion and wheel if the material strengths $\sigma_{\text {Flim }}$ are not equal. Factors $Y_{S T}, Y_{\text {סrelT }}$, $Y_{\text {Rrelt }}$ and Y_{X} may be approximately equal for pinion and wheel.
$\mathrm{Y}_{\text {ST }}$ is the stress correction factor of the reference test gears for the determination of the bending stress number $\sigma_{\text {Flim }}$. For standard reference test gears, Y ST $=2.0$ has beenotch relative suard.
$\mathrm{Y}_{\text {drelt }}$ is the notch relative sensitivity factor (notch sensitivity of the material) referring to the standard reference test gear By approximation $\mathrm{Y}_{\text {drelT }}=1.0$.
For the relative surface factor (surface roughness factor of the tooth root fillet) referring to the standard reference test gear the following m_{n} :
$Y_{\text {RrelT }}=1.00$ for
$m_{n}+8 \mathrm{~mm}$
$=0.98$ for $8 \mathrm{~mm}<\mathrm{m}_{\mathrm{n}}+16 \mathrm{~mm}$
$=0.96$ for
$m_{n}>16 \mathrm{~mm}$
and for the size factor
$Y_{X}=1.05-0.01 m_{n}$
with the restriction $0.8+Y_{X}+1$.
$\sigma_{\text {Flim }}$ Bending stress number of the gear material. For gears out of case hardening steel, case hardened, a range from 310 ... 520 $\mathrm{N} / \mathrm{mm}^{2}$ is shown in figure 20 depending on the surface hardness of the tooth
flanks and the material quality. Under the conditions according to subsection 1.3.1 a strength pertaining to quality MQ may be used as a basis for pinion and wheel see table on page 97.
$S_{F} \quad$ Safety factor required against tooth breakage, see subsection 1.3.6.

Figure 20

Bending stress number $\sigma_{\text {Flim }}$ of alloyed case hardening steel, case hardened, depending on the surface hardness HV1 of the tooth flanks and the material quality.
ML modest demands on the material quality MQ normal demands on the material quality ME high demands on the material quality, see /11/

1.3.6 Safety factors

The minimum required safety factors according to DIN are:
against pitting $\mathrm{S}_{\mathrm{H}}=1.0$
against tooth breakage $S_{F}=1.3$
In practice, higher safety factors are usual. For multistage gear units, the safety factors are de termined about 10 to 20% higher for the expensive final stages, and in most cases even higher for the cheaper preliminary stages.
Also for risky applications a higher safety factor is given.

1.3.7 Calculation example

An electric motor drives a coal mill via a multistage cylindrical gear unit. The low speed gear stage is to be calculated.
Given: Nominal power rating $P=3300 \mathrm{~kW}$ pinion speed $n_{1}=1411 / \mathrm{min}$.; centre distance $\mathrm{a}=$
815 mm ; normal module $\mathrm{m}_{\mathrm{n}}=22 \mathrm{~mm}$; tip diameter $d_{a 1}=615.5 \mathrm{~mm}$ and $\mathrm{d}_{\mathrm{a} 2}=1100 \mathrm{~mm}$; pinion and wheel widths $b_{1}=360 \mathrm{~mm}$ and $\mathrm{b}_{2}=350 \mathrm{~mm}$; numbers of teeth $z_{1}=25$ and $z_{2}=47$; addendum modification coefficients $\mathrm{x}_{1}=0.310$ and $\mathrm{x}_{2}=$ 0.203 ; normal pressure angle $\alpha_{n}=20$ degree;

Cylindrical Gear Units

Load Carrying Capacity of Involute Gears Gear Unit Types
helix angle $\beta=10$ degree; kinematic viscosity of
the lubricating oil $\mathrm{V}_{40}=320 \mathrm{cSt}$; mean peak-tovalley roughness $R_{z 1}=R_{z 2}=4.8 \mu \mathrm{~m}$.
The cylindrical gears are made out of the mate rial 17 CrNiMo 6 . They are case hardened and ground with profile corrections and width-symmetrical crowning.

Calculation (values partly rounded):

Gear ratio $u=1.88$; reference diameter of the pinion $\mathrm{d}_{1}=558.485 \mathrm{~mm}$; nominal circumferential force on the reference circle $F_{t}=800,425 \mathrm{~N}$; circumferential speed on the reference circle $v=$ $4.123 \mathrm{~m} / \mathrm{s}$; base helix angle $\beta_{\mathrm{b}}=9.391$ degree; virtual numbers of teeth $z_{n 1}=26.08$ and $z_{n 2}=$ 49.03; transverse module $\mathrm{m}_{\mathrm{t}}=22.339 \mathrm{~mm}$; transverse pressure angle $\alpha_{t}=20.284$ degree; working transverse pressure angle $\alpha_{w t}=22.244$ degree; normal transverse pitch $p_{\text {et }}=65.829$. base diameters $\mathrm{d}_{\mathrm{b} 1}=523.852 \mathrm{~mm}$ and $\mathrm{d}_{\mathrm{b} 2}=$ 984.842 mm ; length of path of contact $g_{\alpha}=$ 98.041 mm ; transverse contact ratio $\varepsilon_{\alpha}=1.489$; overlap ratio $\varepsilon_{\beta}=0.879$.
Application factor $\mathrm{K}_{\mathrm{A}}=1.50$ (electric motor with uniform mode of operation, coal mill with medium shock load); dynamic factor $\mathrm{K}_{\mathrm{V}}=1.027$; face load factor $K_{H \beta}=1.20$ [acc. to equation (5) follows $\mathrm{K}_{H \beta}$ $=1.326$, however, because of symmetrical crowning the calculation may be made with a smaller value]; $\mathrm{K}_{\mathrm{F} \beta}=1.178 ; \mathrm{K}_{\mathrm{H} \alpha}=\mathrm{K}_{\mathrm{F} \alpha}=1.0$.

Load carrying capacity of the tooth flanks:

Elasticity factor $Z_{E}=190 \quad \mathrm{~N} \mathrm{~mm}{ }^{2}$; zone factor $Z_{H}=2.342$; helix angle factor $Z_{\beta}=0.992$; contact ratio factor $Z_{\varepsilon}=0.832$. According to equation (8), the Hertzian pressure for pinion and wheel is σ_{H} $=1251 \mathrm{~N} / \mathrm{mm}^{2}$.
Lubricant factor $Z_{L}=1.047$; speed factor $Z_{V}=$ 0.978 ; roughness factor $Z_{R}=1.018$; work hardening factor $Z_{W}=1.0$; size factor $Z_{X}=0.94$. With the allowable stress number for contact stress (pitting) $\sigma_{H l i m}=1500 \mathrm{~N} / \mathrm{mm}^{2}$, first the permissible Hertzian pressure $\sigma_{H P}=1470$ $\mathrm{N} / \mathrm{mm}^{2}$ is determined from equation (12) without taking into account the safety factor.
The safety factor against pitting is found by $\mathrm{S}_{\mathrm{H}}=$ $\sigma_{H P} / \sigma_{H}=1470 / 1251=1.18$. The safety factor referring to the torque is $\mathrm{S}_{H^{2}}=1.38$.

Load carrying capacity of the tooth root:

Contact ratio factor $Y_{\varepsilon}=0.738$; helix angle factor $Y_{\beta}=0.927$; tip factors $Y_{F S 1}=4.28$ and $Y_{F S 2}=$. ($\mathrm{p}_{\mathrm{ra}}=0.0205 \mathrm{~m}_{\mathrm{n}}$). The effective tooth root stresses $\sigma_{F 1}=537 \mathrm{~N} / \mathrm{mm}^{2}$ for the pinion and $\sigma_{F 2}$ $=540 \mathrm{~N} / \mathrm{mm}^{2}$ for the wheel can be obtained from equation (18).
Stress correction factor $\mathrm{Y}_{S T}=2.0$; relative sensitivity factor $\mathrm{Y}_{\text {drelT }}=1.0$; relative surface factor $Y_{\text {ReIT }}=0.96$; size factor $Y_{X}=0.83$. Without taking
into consideration the safety factor, the permis sible tooth root stresses for pinion and whee $\sigma_{\text {FP1 }}=\sigma_{\text {FP2 }}=797 \mathrm{~N} / \mathrm{mm}^{2}$ can be obtained from equation (21) with the bending stress number $\sigma_{\text {Flim }}=500 \mathrm{~N} / \mathrm{mm}^{2}$.
The safety factors against tooth breakage referring to the torque are $S_{F}=\sigma_{F P} / \sigma_{F}$: for the pinion $\mathrm{S}_{\mathrm{F} 1}=797 / 537=1.48$ and for the wheel $\mathrm{S}_{\mathrm{F} 2}=$ $797 / 540=1.48$

1.4 Gear unit types

1.4.1 Standard designs

In the industrial practice, different types of gear units are used. Preferably, standard helical and bevel-helical gear units with fixed transmission ratio and size gradation are applied. These sin-gle-stage to four-stage gear units according to the modular construction system cover a wide range of speeds and torques required by the driven machines. Combined with a standard electric motor such gear units are, as a rule, the most economical drive solution.
But there are also cases where no standard drives are used. Among others, this is true for high torques above the range of standard gear units. In such cases, special design gear units are used, load sharing gear units playing an important role there.

1.4.2 Load sharing gear units

In principle, the highest output torques of gear units are limited by the manufacturing facilities since gear cutting machines can make gears up to a maximum diameter only. Then, the output torque can be increased further only by means of load sharing in the gear unit. Load sharing gear units are, however, also widely used for lower torques as they provide certain advantages in spite of the larger number of interna components, among others they are also used in standard design. Some typical features of the one or other type are described in the following.

1.4.3 Comparisons

In the following, single-stage and two-stage gear units up to a ratio of $i=16$ are examined. For common gear units the last or the last and the las but one gear stage usually come to approx 70 to 80% of the total weight and also of the manufac turing expenditure Adding further gear stages in turing expeniev higher transmission ratios thus order not change anything about the following fundamental description fundamental description.
In figure 21, gear units without and with load sharing are shown, shaft 1 each being the HSS n_{2} the transmission ratio can be obtained from n_{2}, the transmission ratio can be obtained from he formula
$\mathrm{i}=\mathrm{n}_{1} / \mathrm{n}_{2}$

The diameter ratios of the gears shown in figure 21 correspond to the transmission ratio $\mathrm{i}=7$. The gear units have the same output torques, so tha d Gear units A, B and C are with off rangement and gear units D, F, F and G with rangement, and gear unit D, E, F, and G with coaxial shaft arrangement.

\qquad
A

B

In gear unit D the load of the high-speed gear stage is equally shared between three interme diate gears which is achieved by the radial mova bility of the sun gear on shaft 1. In the low-speed gear stage the load is shared six times altogether movability of the intermediat shaft movability of the intermediate shaft
In order to achieve equal load distribution beF, F and G the sun gear on shaft 1 mostly is ra dially F, G the sun gear on shaft 1 mostly is ra dially movable. The large internal gear is an an nulus gear which in the case of gear unit E is conF and G with the housing In case units F and G F and G with the housing. In gear units F and G, web and shaft 2 form an integrated whole. The id ler gears rotate as planets around the centra axie. In gear unit G, double helical teeth and axia movability of the idler gears guarantee equa load distribution between six branches.

1.4.3.1 Load value

By means of load value B_{L}, it is possible to com pare cylindrical gear units with different ultimate stress values of the gear materials with each other in the following examinations.
According to $/ 14 /$, the load value is the tooth peripheral force F_{u} referred to the pinion pitch diameter d_{w} and the carrying facewidth b, i.e.

$$
\begin{equation*}
\mathrm{B}_{\mathrm{L}}=\frac{\mathrm{F}_{\mathrm{u}}}{\mathrm{~b} \mathrm{~d}_{\mathrm{w}}} \tag{25}
\end{equation*}
$$

The permissible load values of the meshings of the cylindrical gear units can be computed from the pitting resistance by approximation, as shown in $/ 15 /$ (see section 1.3.4), using the following formula:

$$
\begin{equation*}
\mathrm{B}_{\mathrm{L}} \approx 7 \cdot 10^{-6} \frac{\mathrm{u}}{\mathrm{u}+1} \frac{\sigma^{2} \mathrm{Hlim}}{\mathrm{~K}_{\mathrm{A}} \mathrm{~S}_{\mathrm{H}^{2}}} \tag{26}
\end{equation*}
$$

with B_{L} in $\mathrm{N} / \mathrm{mm}^{2}$ and allowable stress number for contact stress (pitting) $\sigma_{H \text { Him }}$ in $\mathrm{N} / \mathrm{mm}^{2}$ as well as gear ratio u , application factor K_{A} and factor of safety from pitting S_{H}. The value of the gear ratio u is always greater than 1 , and is negative for internal gear pairs (see table 3).
Load value B_{L} is a specific quantity and independent of the size of the cylindrical gear unit. The following applies for practically executed gear units: cylindrical gears out of case ed gear units: cylindrical gears out of case
hardening steel $B_{L}=4 \ldots 6 \mathrm{~N} / \mathrm{mm}^{2}$; cylindrical gears out of quenched and tempered steel $B_{L}=$ $1 \ldots 1.5 \mathrm{~N} / \mathrm{mm}^{2}$; planetary gear stages with annulus gears out of quenched and tempered steel, planet gears and sun gears out of case hardening steel $\mathrm{B}_{\mathrm{L}}=2.0 \ldots 3.5 \mathrm{~N} / \mathrm{mm}^{2}$.

1.4.3.2 Referred torques

In figure 22, referred torques for the gear units shown in figure 21 are represented, dependent on the transmission ratio i . Further explanations are given in table 7. The torque T_{2} is referred to the construction dimension D when comparing the sizes, to the weight of the gear unit G when comparing the weights, and to the generated
surface A of the pitch circle cylinders when comparing the gear teeth surfaces. Gear uni weight G and gear teeth surface A (= generated surface) are one measure for the manufacturing cost. The higher a curve, in figure 22, the better the respective gear unit in comparison with the others.

Comparison criteria	Definition	Dimension	Units of the basic details
Size	$\delta=\frac{\mathrm{T}_{2}}{\mathrm{D}^{3} \mathrm{~B}_{\mathrm{L}}}$	$\frac{\mathrm{m}}{\mathrm{~mm}}$	T_{2} in mm B_{L} in $\mathrm{N} / \mathrm{mm}^{2}$ D in mm G in kg A in m²
Weight	$\gamma=\frac{\mathrm{T}_{2}}{\mathrm{G} \mathrm{~B} \mathrm{~B}_{\mathrm{L}}}$	$\frac{\mathrm{mmm}}{} \mathrm{mg}^{\mathrm{kg}}$	
Gear teeth surface	$\alpha=\frac{T_{2}}{A^{3 / 2} B_{L}}$	$\frac{\mathrm{mm}^{2}}{\mathrm{~m}^{2}}$	

Figure 22
Comparisons of cylindrical gear unit types in figure 21 dependent on the transmission ratio i . Explanations are given in table 7 as well as in the text.

For all gear units explained in figures 21 and 22 , the same prerequisites are valid. For all gear units, the construction dimension D is larger than Similar of the pitch diameters by the factor 1.is. and width Also the wall thickness of the housing and width. Also the wall thickness of the housing is in a fixed relation to the construction dimensio D/15/.
With a given torque T_{2} and with a load value B_{L} computed according to equation (26), the construction dimension D, the gear unit weight G , and the gearoximation by figure 22 for a given transmission ratio i. However, the weights transmission ratio 1 . However, the weights of modular-type gear units are usually higher, since he housing different points of view. -ermined according to different points of view.
Referred to size and weight, planetary gear units F and G have the highest torques at small ratios i . For ratios $i<4$, the planetary gear becomes the piniont instead of the sun gear. Space requirement and load carrying capacity of the planetary gear bearings decrease considerably. Usually, the planetary gear bearings are arranged in the planet carrier for ratio $\mathrm{i}<4.5$.
Gear units C and D, which have only external gears, have the highest torque referred to size and weight for ratios above $i \approx 7$. For planetary gear units, the torque referred to the gear teeth surface is more favourable only in case of small ratios, if compared with other gear units. It is to be taken into consideration, however, that internal gears require higher manufacturing expenditure than external gears for the same quality of manufacture.
The comparisons show that there is no optimal gear unit available which combines all advantages over the entire transmission ratio range. Thus, the output torque referred to size and weight is the most favourable for the planetary gear unit, and this all the more, the smaller the transmission ratio in the planetary gear stage. With increasing ratio, however, the referred torque decreases considerably. For ratios above $i=8$, load sharing gear units having external gears only are more favourable because with increasing ratio the referred torque decreases only slightly.
With regard to the gear teeth surface, planetary gear units do not have such big advantages if compared to load sharing gear units having external gears only.

1.4.3.3 Efficiencies

When comparing the efficiency, figure 22d, only the power losses in the meshings are taken into consideration. Under full load, they come to approx. 85% of the total power loss for common cylindrical gear units with rolling bearings. The efficiency as a quantity of energy losses results
from the following relation with the input power at shaft 1 and the torques T_{1} and T_{2}

$$
\eta+\frac{\bar{i}}{\bar{i}} \frac{T_{2}}{T_{1}}=
$$

All gear units shown in figure 21 are based on the same coefficient of friction of tooth profile $\mu z=0.06$. Furthermore, gears without addendum modification and numbers of teeth of the pinion $z=17$ are uniformly assumed for all gea units $/ 15 /$, so that a comparison is possible. The single stage gear unit A has the best units B C , D E F F and G are lower because the units B, C, D, E, F, and G are lower because the power flow passes two meshings. The internal gear pairs in gear units E,F, and G show better efficiencies owing to lower siding velocities in the meshings compared to gear units B, C, and D which only have external gear pairs.
The lossfree coupling performance of planetary gear units F and G results in a further improve-
ment of the efficiency. It is therefore higher than ment of the efficiency. It is therefore higher than that of other comparable load sharing gear units. For higher transmission ratios, however, more planetary gear stages are to be arranged in series so that the advantage of a better efficiency compared to gear units B, C, and D is lost.

1.4.3.4 Example

Given: Two planetary gear stages of type F arranged in series, total transmission ratio $i=20$, output torque $T_{2}=3 \cdot 10^{6} \mathrm{Nm}$, load value $\mathrm{B}_{\mathrm{L}}=2.3 \mathrm{~N} / \mathrm{mm}^{2}$. A minimum of weight is approximately achieved by a transmission ratio division of $i=5 \cdot 4$ of the HS and LS stage. At $\gamma_{1}=30 \mathrm{~m}$ $\mathrm{mm}^{2} / \mathrm{kg}$ and $\gamma_{2}=45 \mathrm{~m} \mathrm{~mm}^{2} / \mathrm{kg}$ according to figure 22 b , the weight for the HS stage is approximately 10.9 t and for the LS stage approximately 30 t , which is a total 40.9 t . The total efficiency according to figure 22d is $\eta=$ $0.986 \cdot 0.985=0.971$.
In comparison to a gear unit of type D with the same transmission ratio $i=20$ and the same output torque $T_{2}=3 \cdot 10^{6} \mathrm{Nm}$, however, with a better load value $B_{L}=4 \mathrm{~N} / \mathrm{mm}^{2}$ this gear unit has a weight of 68.2 t according to figure 22 with $\gamma=11 \mathrm{~m} \mathrm{~mm}^{2} / \mathrm{kg}$ and is thus heavier by 67%. The advantage is a better efficiency of $\eta=0.98$. The two planetary gear stages of type F together have a power loss which is by 45% higher than that of the gear unit of type D. In addition, there is not enough space for the rolling bearings of the planet gears in the stage with $i=4$.

Cylindrical Gear Units

Noise Emitted by Gear Units

Correction curvel

1.5 Noise emitted by gear units

1.5.1 Definitions

Noise emitted by a gear unit - like all other noises - is composed of tones having different frequencies f.
Measure of intensity is the sound pressure p which is the difference between the highest (or lowest) and the mean pressure in a sound wave detected by the human ear.
The sound pressure can be determined for a single frequency or - as a combination - for a frequency range (single-number rating). It is dependent on the distance to the source of sound.
In general, no absolute values are used but amplification or level quantities in bel (B) or decibel (dB). Reference value is, for instance, the sound pressure at a threshold of audibility $\mathrm{p}_{\mathrm{o}}=2 \cdot 10^{-5} \mathrm{~N} / \mathrm{m}^{2}$
In order to take into consideration the different sensitivities of the human ear at different frequencies, the physical sound pressure value at the different frequencies is corrected according to rating curve A , see figure 23.
Apart from sound pressures at certain places, sound powers and sound intensities of a whole system can be determined.
From the gear unit power a very small part is turned into sound power. This mainly occurs in
the meshings, but also on bearings, fan blades or by oil movements. The sound power is transmitted from the sources to the outside gea unit surfaces mainly by structure-borne noise (material vibrations). From the outside surfaces air borne noise is emitted.
The sound power LWA is the A-weighted sound power emitted from the source of sound and thus a quantity independent of the distance. The sound power can be converted to an average sound pressure for a certain place. The sound pressure decreases with increasing distance from the source of sound.
The sound intensity is the flux of sound power through a unit area normal to the direction of propagation. For a point source of sound results from the sound power LW divided by the cally enveloping the source of sound Like the cally enveloping the source of sound. Like the sound pressure, the sound intensity is dependent on the distance to the source of sound, however, unlike the sound pressure it is a directional quantity.
The recording instrument stores the sound pressure or sound intensity over a certain period of
time and writes the dB values in frequency time and writes the dB values in frequency ranges (bands) into the spectrum (system o coordinates).
Very small frequency ranges, e.g. 10 Hz or $1 / 12$ octaves are termed narrow bands, see figure 24 .

Figure 24

Narrow band frequency spectrum for $L_{p A}$ (A-weighted sound pressure level) at a distance of 1 m from a gear unit.

Histograms occur in the one-third octave spectrum and in the octave spectrum, see figures 25 and 26 In the one-third octave spectrum (spectrum with $1 / 3$ octaves), the bandwidth results from

$$
\begin{gathered}
f_{0} / f_{u}=\sqrt[3]{2, \text { i.e. } f_{o} / f_{u}=1.26} \\
f_{o}=f_{m} \cdot 1.12 \text { and } f_{u}=f_{m} / 1.12
\end{gathered}
$$

$f_{m}=$ mean band frequency, $f_{o}=$ upper band frequency, $f_{u}=$ lower band frequency. In case of oc taves, the upper frequency is as twice as big as the lower one, or $f_{o}=f_{m} \cdot 1.41$ and $f_{u}=f_{m} / 1.41$.

Figure 25
One-third octave spectrum of a gear unit (sound intensity level, A-weighted)

Figure 26
Octave spectrum of a gear unit (sound intensity level, A-weighted)
The total level (resulting from logarithmic addi tion of individual levels of the recorded frequency
range) is a single-number rating. The total level is the common logical value for gear unit noises The pressure level is valid for a certain distance in general 1 m from the housing surface as an ideal parallelepiped
1.5.2 Measurements

The main noise emission parameter is the sound power level.
1.5.2.1 Determination via sound pressure DIN 45635 Part 1 and Part 23 describe how to determine the sound power levels of a given gear unit /16/. For this purpose, sound pressure levels L_{pA} are measured at fixed points surrounding the gear unit and converted to sound power levels Lwa. The measurement surface ratio L_{S} is an auxiliary quantity which is dependent on the sum of the measurement surfaces. When the gear unit is placed on a reverberant base, the bottom is not taken into consideration, see example in figure 27.

Figure 27
Example of arrangement of measuring points according to DIN $45635 / 16$ /

In order to really detect the noise radiated by the gear unit alone, corrections for background noise and environmental influences are to be made. It is not easy to find the correct correction values because in general, other noise radiating machines are in operation in the vicinity.
1.5.2.2 Determination via sound intensity The gear unit surface is scanned manually all means of a special measuring device containing two opposing microphones The mean of the levls is taken via the specified time a two min es An analyzer computes the intensity or power levels in one-third octave or ctave bands The results can e- seen on a display screen In most cases they can also be recorded or printed most cases, they can al

Cylindrical Gear Units

Noise Emitted by Gear Units

The results correspond to the sound power lev els as determined in accordance with DIN 45635 This procedure requires a larger number of devices to be used, however, it is a very quick one. Above all, foreign influences are eliminated in the simplest way.

1.5.3 Prediction

It is not possible to exactly calculate in advance the sound power level of a gear unit to be made. rience. In the VDI guidelines $2159 / 17 /$, for exam ple, reference values are given. Gear unit manu facturers, too, mostly have own records.
The VDI guidelines are based on measurements carried out on a large number of industrial gear units. Main influence parameters for gear unit noises are gear unit type, transmitted power, manufacturing quality and speed. In VDI 2159, a
distinction is made between cylindrical gear units with rolling bearings, see figure 28, cylindrical gear units with sliding bearings (high-speed gea units), bevel gear and bevel-helical gear units, planetary gear unis and worm gear units, be found in the guidelines. e found in the guideline
Figure 28 exemplary illustrates a characteristic diagram of emissions for cylindrical gear units. Similar characteristic diagrams are also available for the other gear unit types mentioned 60\% the characteristic diagrams, 50% - and 80%-lines are drawn. The 80\%-line means, fo xample, that 80% of the recorded industria gear units radiate lower noises.
The lines are determined by mathematical equations. For the 80%-lines, the equations according to VDI 2159 are:

Gear units	Total sound power level LWA
Cylindrical gear units (rolling bearings)	$77.1+12.3 \cdot \log \mathrm{P} / \mathrm{kW}(\mathrm{dB})$
Cylindrical gear units (sliding bearings)	$85.6+6.4 \cdot \log \mathrm{P} / \mathrm{kW}(\mathrm{dB})$
Bevel gear and bevel-helical gear units	$71.7+15.9 \cdot \log \mathrm{P} / \mathrm{kW}(\mathrm{dB})$
Planetary gear units	$87.7+4.4 \cdot \log \mathrm{P} / \mathrm{kW}(\mathrm{dB})$
Worm gear units	$65.0+15.9 \cdot \log \mathrm{P} / \mathrm{kW}(\mathrm{dB})$

[^3]Type: Cylindrical gear units with external teeth mainly (> 80\%) having the following characteristic features:
Housing:
Cast iron housing
Bearing arrangement:
Rolling bearings
Rolling bearings
Dip lubrication
Dip lubrication
Installation:
Rigid on steel or concrete
Power rating: 0.7 up to 2400 kW
Input speed (= max. speed):
1000 up to $5000 \mathrm{~min}^{-1}$
(mostly $1500 \mathrm{~min}^{-1}$)
Max. circumferential speed
1 up to $20 \mathrm{~ms}^{-1}$
Output torque
100 up to 200000 Nm
No. of gear stages: 1 to 3
Information on gear teeth:
HS gear stage with helical teeth
($\beta=10^{\circ}$ up to 30°), hardened,
fine-machined, DIN quality 5 to 8

haracteristic diagram of emissions for cylindrical gear units (industrial gear units) acc. to VDI 2159 /17/

Cylindrical Gear Units

Noise Emitted by Gear Units

The measurement surface sound pressure level $L_{p A}$ at a distance pound power level
$L_{p A}=L_{W A}-L_{s}(d B)$
$L_{s}=10 \cdot \log S(d B)$
$S=$ Sum of the hypothetical surfaces $\left(\mathrm{m}^{2}\right)$ enveloping the gear unit at a distance of 1 (ideal parallelepiped)

Example of information for $\mathrm{P}=100 \mathrm{~kW}$ in a -stage cylindrical gear unit of size 200 (centre distance in the 2nd gear stage in mm), with rolling bearings, of standard quality:

The sound power level, determined in accord ance with DIN 45635 (sound pressure measure ment) or according to the sound intensity measurement method, is $102+2 \mathrm{~dB}(\mathrm{~A})$. Room and connection influences have not been taken into consideration. If it is agreed that measurements are to be made they will be carried out on the manufacturer's test stand."

Note:

For this example, a measurement surface sound pressure level of $102-13.2 \approx 89 \mathrm{db}(\mathrm{A})$, tolerance +2 dB , is calculated at a distance of 1 m with a measurement surface $S=21 \mathrm{~m}^{2}$ and a measurement surface ratio $\mathrm{L}_{\mathrm{S}}=13.2 \mathrm{~dB}$.
Individual levels in a frequency spectrum cannot safely be predicted for gear units because of the multitude of influence parameters.

1.5.4 Possibilities of influencing

With the selection of other than standard geome tries and with special tooth modifications (see section 125), spear unit noises can be positively influenced. In some cases, such a procedure re sults in a reduction in the performance (o. mo dule reduction) for the same size, in any case however in special design and manufacturing howeve, in special design and manufacturing expenditure. Housing design, distribution of masses, type of rolling bearing, lubrication and cooling are also important.
Sometimes, the only way is to enclose the gear units which makes possible that the total level is reduced by 10 to 25 dB , dependent on the conditions.

Attention has to be paid to it, that no structure borne noise is radiated via coupled elements (couplings, connections) to other places from where then airborne noise will be emitted.
A sound screen does not only hinder the propagation of airborne noise but also the heat dissipa tion of a gear unit, and it requires more space.
Shaft Couplings Page
General Fundamental Principles 136
Rigid Couplings 136
Torsionally Flexible Couplings 136-138
Torsionally Rigid Couplings 138
Positive Clutches 138
Friction Clutches 138
Synoptical Table of Torsionally Flexible and Torsionally Rigid Couplings 139
Positive Clutches and Friction Clutches 140

Shaft Couplings

General Fundamental Principles
Rigid and Torsionally Flexible Couplings

2. Shaft couplings

2.1 General fundamental principles

In mechanical equipment, drives are consisting of components like prime mover, gear unit, shafts and driven machine. Such components are connected by couplings which have the following tasks:
Transmitting an as slip-free as possible motion of rotation, and torques;
Compensating shaft misalignments (radial, axial, angular);
Reducing the torsional vibration load, influencing and displacing the resonant ranges;

Damping torque and speed impulses;
Interrupting the motion of rotation (clutches); Limiting the torque;
Sound isolation;
Electrical insulation.
The diversity of possible coupling variants is shown in the overview in figure 29. A distinction is made between the two main groups couplings and clutches, and the subgroups rigid/flexible couplings and positive/friction clutches.

(*) In case of additional gearing, all clutches are disengageable when stationary.

Figure 29

Overview of possible shaft coupling designs

2.2 Rigid couplings

Rigid couplings connect two shaft ends and do practically not allow any shaft misalignment. They are designed as clamp, flange and radial tooth couplings and allow the transmission of high torques requiring only small space. The coupling halves are connected by means of bolts (close fitting bolts). In case of clamp and flange couplings (with split spacer ring), radial disas-self-centering and transmit both high and alter-seff-centering and transmit both high and alter nating torques.

2.3 Torsionally flexible couplings

Torsionally flexible couplings are offered in many designs. Main functions are the reduction of torque impulses by elastic reaction, damping of torsional vibrations by internal damping in case of couplings with flexible rubber elements, and flexiblal damping in case of couplings with frequencies by variation, transter of resonance requences by virion stif low restoring forces. shaft misalignments with low restoring forces

The flexible properties of the couplings are gen erated by means of metal springs (coil springs leaf springs) or by means of elastomers (rubber, metal . Forents, the torsional flexibility is be mear 2 and 25 , The stiffness characteristics as a rule show a linear behaviour, unless a progressive characteristic has intentionally been aimed for by design istic has intentionally been aimed for by design friction and viscous damping means. means of friction and viscous damping means.
In case of couplings incorporating elastomer elements, a distinction is made between couplings of average flexibility with torsion angles of 2 up to 5 degree and couplings of high flexibility with torsion angles of 5 up to 30 degree. Depending on the type, the flexible elements of the coupling are subjected to compression (tension), bending and shearing, or to a combined form of stressing. In some couplings (e.g. tyre couplings), the flexible elements are reinforced by fabric or thread inserts. Such inserts absorb the coupling forces and prevent the elastic-viscous flow of the elastomer.
Couplings with elastomer elements primarily subjected to compression and bending have non-linear progressive stifness characteristics, while flexible elements (without fabric insert) merely subjected to shearing generate linear stiffness characteristics. The quasi-statical orsional stiffness of an elastomer coupling increases at dynamic load (up to approximately 30 Hz , test frequency 10 Hz) by approximately 30 to 50%. The dynamic stiffness of a coupling is influenced [(+) increased; (-) reduced] by the average load (+), the oscillation amplitude (- , temperature (-), oscillation frequency (+), and period of use (-).
For rubber-flexible couplings, the achievable damping values are around $\psi=0.8$ up to 2 (damping coefficient ψ; DIN $740 / 18 /$). Damping leads to heating of the coupling, and the heat loss has to be dissipated via the surface. The dynamic loading capacity of a coupling is determined by the damping power and the restricted operating temperature of elastomers of $80^{\circ} \mathrm{C}$ up to max. $100^{\circ} \mathrm{C}$.
When designing drives with torsionally flexible couplings according to DIN $740 / 18 /$, torsional vibrations are taken into account by reducing the drive to a two-mass vibration generating system, or by using torsional vibration simulation programs which can compute detailed vibration systems for both steady and unsteady conditions. Examples of couplings incorporating elastomer elements of average flexibility are claw-, pin-, and pin and bush couplings.

The N-EUPEX coupling is a wear-resistant pin coupling for universal use (figure 30) absorbing large misalignments. The coupling is available as fail-safe coupling and as coupling without failsafe device. In its three-part design it is suitable flexible assembly and simple replace in diff lexible elements. The coupling is made in differ ent types and sizes for torq The BIPEX coupling is a flexible fail-safe claw coupling in compact design for high power capacity and is offered in different sizes for maximum torques up to $3,700 \mathrm{Nm}$. The coupling is especially suitable for plug-in assembly and fitting into bell housings.
The RUPEX coupling is a flexible fail-safe pin and bush coupling which as a universal coupling is made in different sizes for low up to very high torques ($10^{6} \mathrm{Nm}$) (figure 31). The coupling is absorbing large misalignments. The optimized absorbing large misalignments. The optimized shape of the buffer bolts facilitate assembly and seat of the buffer bolts facilitate assembly and guarantee maintenance-free operation. Because of their capability to transmit high torques, large RUPEX couplings are often used on the output side between gear unit and driven machine. Since the coupling hubs are not only offered in grey cast iron but also in steel, the couplings are also suitable for high speeds.
Examples of highly flexible couplings incorporating elastomer elements are tyre couplings,
flange couplings, ring couplings, and large-volflange couplings, ring couplings, and large-volals. Examples of flexible couplings incorporating metal elements are coil spring and leaf spring couplings.
The ELPEX coupling (figure 32) is a highly flexible ring coupling without torsional backlash which is suitable for high dynamic loads and has good damping properties. Rings of different elasticity are suitable for optimum dynamic tuning of drives. Torque transmitting thread inserts have been vulcanized into the rings out of high-quality natural rubber. Due to the symmetrical design the coupling is free from axial and radial forces and allows large shaft misalignments even under torque loads. Typical applications for ELPEX couplings which are available for torques up to $90,000 \mathrm{Nm}$ are drives with periodically exciting aggregates (internal combustion engines,
reciprocating engines) or extremely shockreciprocating engines) or extremely shock loaded drives with large shaft misalignments.
Another highly flexible tyre coupling with a simple closed tyre as flexible element mounted between two flanges is the ELPEX-B coupling. It is available in different sizes for torques up to 20,000

Shaft Couplings

Torsionally Flexible Couplings

Torsionally Rigid Couplings Positive and Friction Clutches

This coupling features high flexibility without torsional backlash, absorbs large shaft misalignments, and permits easy assembly and disassembly (radial).
The ELPEX-S coupling (figure 33) is a highly flexible, fail-safe claw coupling absorbing large shaft misalignments. The large-volume cellular flexible elements show very good damping properties with low heating and thus allow high dynamic loads. The couplings have linear stiffness characteristics, and with the use of different flexible elements they are suitable for optimum dynamic tuning of drives. The couplings are of compact design and are suitable for torques up to 80,000 Nm. Plug-in assembly is possible. This universal coupling can be used in drives with high dynamic loads which require low frequency with good damping.

2.4 Torsionally rigid couplings

Torsionally rigid couplings are used where the torsional vibration behaviour should not be changed and exact angular rotation is required, but shaft misalignment has to be absorbed at the same time. With the use of long floating shafts large radial misalignments can be allowed. Torsionally rigid couplings are very compact, however, they have to be greased with oil or grease (exception: steel plate and membrane couplings). Typical torsionally rigid couplings are universal joint, gear, membrane and steel plate couplings, which always have to be designed as double-jointed couplings with floating shafts (spacers) of different lengths.
Universal joints allow large angular misalignments (up to 40 degree), the dynamic load increasing with the diffraction angle. In order to avoid pulsating angular rotation (2 imes the torsional frequency), universal joints must alase, forks on the intermediate shaft in one angle, input and output shaft in one plane) plane, inpur and ouput shat ine plane). Constant velocity joints, however, always
transmit uniformly and are very short. transmit uniformly and are very short.
Gear couplings of the ZAPEX type (figure 34) are double-jointed steel couplings with crowned gears which are capable of absorbing shaft
misalignments (axial, radial and angular up to 1 degree) without generating large restoring forces. The ZAPEX coupling is of compact design, suitable for high speeds, and transmits very high torques (depending on the size up to > $10^{6} \mathrm{Nm}$), and in addition offers large safety reserves for the absorption of shock loads. It is lubricated with oil or grease. Fields of application are, among others, rolling mills, cement mills, conveyor drives, turbines.

The ARPEX coupling (figure 35) is a double jointed, torsionally rigid plate coupling for the absorption of shaft misalignments (angular up to 1 degree). The coupling is maintenance-free (no lubrication) and wear-resistant and owing to it closed plate packs allows easy assembly. A wide range of ARPEX couplings is available - from the miniature coupling up to large-size couplings for torques up to $>10 \mathrm{Nm}$. The coupling transmits torques very uniformly, and owing to its all-steel (up to $280^{\circ} \mathrm{C}$) and high speeds. Fields (up to $280^{\circ} \mathrm{C}$) and high speeds. Fields of application are, among others, paper machines, ventilators, pumps, drives for materials-handling equipment as well as for control systems.

2.5 Positive clutches

This type includes all clutches which can be actuated when stationary or during synchronous operation in order to engage or disengage a machine to or from a drive. Many claw, pin and bush, or gear couplings can be used as clutches by axially moving the driving member. With the additional design element of interlocking teeth all flexible couplings can be used as clutches.

2.6 Friction clutches

In friction clutches, torques are generated by friction, hydrodynamic or electrodynamic effect. The clutch is actuated externally, even with the shaft rotating (mechanically, hydraulically pneumatically, magnetical), speed-dependen (centrifugal force, hydrodynamic), torquedependent (slip clutches, safety clutches), and dependent on the direction of rotation (overrun ning clutches).
Of the different clutch types, friction clutches are most commonly used which may contain either dry- or wet- (oil-lubricated) friction elements. Dependent on the friction element and the number of friction surface areas, a distinction is made between cylindrical, cone, flange and disk clutches. The larger the number of friction surface areas, the smaller the size of the clutch. Further criteria are wear, service life, idle torque, cooling, cycle rate, and uniform friction effect (non-chattering).
The PLANOX clutch is a dry-friction multiple disk clutch with one up to three disks, which has been designed with overload protection for application in general mechanical engineering. It is pneumatic or hydraulic force Uniform, electrical, pneumatic or hydraulic force. Uniform transmis sion of torque is guaranteed by spring pressure even after high cylce rates. The clutch is made in different types and sizes for torques up to $3 \cdot 10$ Nm .

Shaft Couplings

Synoptical Table of Torsionally Flexible and Torsionally Rigid Couplings

Shaft Couplings
 Friction Clutches

Fluid Couplings

The AUTOGARD torque limiter is an automati-
cally actuating safety clutch which disconnects driving and driven side by means of a high-accu ransmissionated mechanism and the set disen gasement torque is exceed The torqu limiter gageme for operation again when the mechan ismas bor open agill Th clutch is made in different sizes for disengage ment torques up to $56,500 \mathrm{Nm}$. disengage ment torques up to $56,500 \mathrm{Nm}$.
Speed-controlled clutches allow soft starting of heavy-duty driven machines, the motor accel erating itself at first and then driving the machine. This permits the use of smaller dimensioned mo ors for high mass moments of inertia and a high number of starts. Speed-controlled clutches are designed as centrifugal clutches with segments e.g. retaining springs which transmit torques only from a specified operating speed on, or with pe ets (powder, balls, rollers). The torque which is generated by friction on the lateral area of the output part increases as the square of the input speed. After running up, the clutch operate without slip.

The FLUDEX coupling (figure 36) is a hydrodynamic fluid coupling operating according to the Föttinger principle without mechanical friction The coupling parts on the input (pump) and out put (turbine) side are not mechanically connect ed and thus wear-resistant.

Torque is transmitted by the rotating oil fluid in the coupling accelerated by the radial blades (pulse exchange). Fluid couplings have the same char acteristics as turbines; torque increases with the second power, and power capacity is proportional to the third power of the input speed. During steady torque transmission little operating slip occurs which heats up the coupling. As safety elements for limiting the temperature, fusible safety plugs and electronically or mechanically controlled temperature monitors are used. Fluid couplings are mainly used for starting grea masses, for separating torsional vibrations, and for limiting overloads during starting and in case of blockages.

Outer wheel drive

Blade wheel housing (outer wheel)
2 Cover
3 Fusible safety plug
4 Filler plug
5 Impeller (inner wheel)
6 Hollow shaft

7 Delay chamber
8 Working chamber
9 Flexible coupling (N-EUPEX D)
10 Damming chamber

Figure 36
Basic design of a fluid coupling with and without delay chamber, FLUDEX type
Vibrations Page
Symbols and Units 142
General Fundamental Principles 143-145
Solution Proposal for Simple Torsional Vibrators 145/146
Solution of the Differential Equation of Motion 146/147
Formulae for the Calculation of Vibrations 147
Mass 147
Mass Moment of Inertia 147
Symbols and Units of Translational and Torsional Vibrations 148
Determination of Stiffness 149
Overlaying of Different Stiffnesses 150
Conversions150
Natural Frequencies,

Vibrations

Symbols and Units

Vibrations

General Fundamental Principles

3. Vibrations

3.1 General fundamental principles

Vibrations are more or less regularly occurring f of a vibrating system can be described by suitable variables, such as displacement, angle, velocity, pressure, temperature, electric voltage/ current, and the like.
The simplest form of a mechanical vibrating system consists of a mass and a spring with fixed ends, the mass acting as kinetic energy store
and the spring as potential energy store, see figure 37. During vibration, a periodic conversion of potential energy to kinetic energy takes place and vice versa, i.e. the kinetic energy of the mass and the energy stored in the spring are converted at certain intervals of time. Dependent on the mode of motion of the mass, a distinction is made between translational (bending) and torsional vibrating systems as well as coupled vibrating systems in which translational and torsiona vibrations occur at the same time, influencing each other.

Further, a distinction is made between free vibrations and externally forced vibrations, and whether the vibration takes place without energy losses (undamped) or with energy losses (damped).
A vibration is free and undamped if energy is neither supplied nor removed by internal friction so that the existing energy content of the vibration is maintained. In this case the system carries out steady-state natural vibrations the frequency

Period 2π
$\mathrm{X}=\mathrm{A} \cdot \sin \omega \cdot \mathrm{t}$
$\mathrm{A}=$ Amplitude $\omega=$ Radian frequency
$\mathrm{t}=$ Time

$=A \cdot \sin (\omega \cdot t+\alpha)$
$\alpha=$ Phase angle
of which is determined only by the characteristics of the spring/mass system (natural frequency), figure 39a.
The vibration variation with time x can be described by the constant amplitude o oscillation A and a harmonic function (sine cosine) the arguments of which contain natura radian frequency $\omega=2 \pi \cdot f(f=$ natural frequency in Hertz) and time, see figure 38.

Vibrations

General Fundamental Principles

A damped vibration exists, if during each period of oscillation a certain amount of vibrationa energy is removed from the vibration generating system by internal or external friction. If a con stant viscous damping (Newton's friction) exists, the amplith ance with a geometric progression, figure 39b. All to more or less strong damping effects. subject to more or less strong damping effects

Displacement x

Stimulated vibration $(\delta<0)$

Time t

Figure 39

Vibration variations with time ($\mathrm{A}=$ initial amplitude at time $t=0 ; \delta=$ damping constant)

If the vibrating system is excited by a periodic ex ternal force $F(t)$ or moment $M(t)$, this is a forced or stimulated vibration, figure 39c. With the periodic external excitation force, energy can be supplied o or removed from the vibrating system.
After a building-up period, a damped vibrating system does no longer vibrate with its natural fre quency but with the frequency of the external ex citation force.
Resonance exists, when the applied frequency is at the natural frequency of the system. Then, in undamped systems the amplitudes of oscillation grow at an unlimited degree. In damped sysems, the amplitude of oscillation grows until the energy supplied by the excitation force and the energy converted into heat by the damping energy are in equilibrium. Resonance points may
lead to high loads in the components and there fore are to be avoided or to be quickly traversed (Example: natural bending frequency in high speed gear units)
The range of the occurring amplitudes of oscilla tion is divided by the resonance point (natura frequency = excitation frequency, critical vibra tions) into the subcritical and supercritical oscillation range. As a rule, for technical vibrating systems (e.g. drives), a minimum frequency is required 5% or larger fromaresonance poin is required
Technical vibrating systems often consist of several masses which are connected with each other by spring or damping elements. Such systems have as many natural frequencies with the corresponding natural vibration modes as degrees of reedom of motion. A fee, i.e. unfixed torsional vibration system with n masses, for instance, has n -1 natural frequencies. All these natural frequencies can be excited to vibrate by periodic external or internal forces, where mostly only the lower natural frequencies and especially the basic frequency (first harmonic) are of importance.
In technical drive systems, vibrations are excited by the following mechanisms:
a) From the input side:

Starting processes of electric motors, system short circuits, Diesel Otto engines, turbines unsteady processes, starting shock im pulses, control actions.
b) From transmitting elements

Meshing, unbalance, universal-joint shaft, alignment error, influences from bearings.
c) From the output side:

Principle of the driven machine, uniform, non uniform, e.g. piston compressor, propeller.

As a rule, periodic excitation functions can be described by means of sine or cosine functions and the superpositions thereof. When analysing vibration processes, a Fourier analysis may often be helpful where periodic excitation processes are resolved into fundamental and harmonic oscillations and thus in comparison with the natural frequencies of a system show possible resonance points.
In case of simple vibrating systems with one or few (maximum 4) masses, analytic solutions for the natural frequencies and the vibration variation with time can be given for steady excitation For unsteady loaded vibrating systems with one or more masses, however, solutions can be calculated only with the aid of numerical simulation programmes. This applies even more to vibrating systems with non-linear or periodic variable parameters (non-linear torsional stiffness of couplings; periodic meshing stiffnesses). With EDP

Vibrations

General Fundamental Principles
Solution Proposal for Simple Torsional Vibrators
programmes, loads with steady as well as unsteady excitation can be simulated for complex vibrating systems (linear, non-linear, parameter-excited) and fre epresented in the form of frequency analyses, of res a flexible couplings can be designed dynamically in accordance with DIN 740 /18/ In this standard implified solution proposals for shock-loaded

Fixed one-mass vibration generating system
Free two-mass vibration generating system

Figure 40

$\begin{array}{ll}\mathrm{J}, \mathrm{J}_{1}, \mathrm{~J}_{2} & =\text { mass moment of inertia }[\mathrm{kgm} \\ \mathrm{c} & =\text { torsional stiffness }[\mathrm{Nm} / \mathrm{rad}] \\ \mathrm{k} & =\text { viscous damping }[\mathrm{Nms} / \mathrm{rad}]\end{array}$
$\mathrm{M}(\mathrm{t}) \quad=$ external excitation moment [Nm] , time-variable
$\varphi \quad=$ angle of rotation [rad] , $\left(\varphi=\varphi_{1}-\varphi_{2}\right.$ for 2-mass vibration generating systems as relative angle)
$=$ angular acceleration $\left[\mathrm{rad} / \mathrm{s}^{2]}\right.$ (second time derivation of φ)
Differential equation of motion:
One-mass vibration generating system:

Natural radian frequency (undamped): ω_{0}

Two-mass vibration generating system with relative coordinate:

$$
\begin{align*}
& +\underbrace{\frac{k}{J^{*}}}_{2} \cdot+\underbrace{\frac{c}{J^{*}}}_{\underbrace{2}_{0}} \quad \frac{M(t)}{J_{1}} \tag{31}\\
& \text { with } \quad 1={ }_{2} \tag{32}\\
& J^{*} \frac{J_{1} J_{2}}{J_{1}+J_{2}} \tag{33}
\end{align*}
$$

with
and periodically loaded drives are made the drive train having been reduced to a two-mass vibration generating system.

3.2 Solution proposal for simple torsiona vibrators

Analytic solution for a periodically excited one(fixed) or two-mass vibration generating system figure 40.

$\dot{\varphi} \quad=$ angular velocity [rad/s] (first time derivation of φ)

- c $\frac{J_{1}+J_{2}}{J_{1} J_{2}}$
rad s
vibration in rad/s
$\mathrm{n}_{\mathrm{e}}=$ natural frequency in Hertz

Damped natural radian frequency:

Natural frequency:

$$
\begin{equation*}
\mathrm{f}_{\mathrm{e}} \quad \frac{0}{2} \quad[\mathrm{~Hz}] \tag{3}
\end{equation*}
$$

$n_{e} \quad[\quad 30 \quad[1 / \mathrm{min}]$

$\overline{2_{0}^{2}={ }^{2}} \quad \circ \quad \overline{1=\mathrm{D}^{2}}$

Vibrations

Solution Proposal for Simple Torsional Vibrators
Solution of the Differential Equation of Motion

Attenuation ratio (Lehr's damping): D
$D \quad-\quad \frac{k}{2} \quad \mathrm{c} \quad-\quad 1$
$\psi=$ damping coefficient on torsionally flexible coupling, determined by a damping hysteresis of a period of oscillation acc. to DIN 740 /18/ and/or acc. to Flender brochure
damping energy \qquad $\frac{A_{D}}{A_{B}}$
$\overline{\text { elastic deformation energy }} \overline{A_{e}}$

Reference values for some components:
$\mathrm{D}=0.001 \ldots 0.01$
$\mathrm{D}=0.04 \ldots 0.08$
$\mathrm{D}=0.04 \ldots 0.15(0.2)$
$\mathrm{D}=0.01 \ldots 0.04$

shafts (material damping
of steel)
gear teeth in gear unit
torsionally flexible cou
plings
gear couplings, all-ste
couplings, universal join
shafts

Static spring characteristic
for one load cycle

Figure 41
Damping hysteresis of a torsionally
flexible component

3.3 Solution of the differential equation of

 motionPeriodic excitation momen
$M(t) \quad M_{0} \quad \cos \mu \quad t$
$\mathrm{M}_{\mathrm{O}}=$ amplitude of moment $[\mathrm{Nm}]$ $\Omega=$ exciting circuit frequency [rad/s]

Total solution:

$$
h^{+} \quad p
$$

a) Free vibration (homogeneous solution h)

Constants A and γ are determined by the starting conditions, e.g. by $h=0$ and ${ }_{h}=0$ (initial-value problem).
In damped vibrating systems $(\delta>0)$ the free com ponent of vibration disappears after a transien period.
b) Forced vibration (particular solution p)
$p \quad \frac{\mathrm{M}_{\mathrm{o}}^{*}}{\mathrm{C}} \frac{1}{\left(1={ }^{2}\right)^{2}+4 \mathrm{D}^{2}{ }^{2}}$
$\cos (\mu \quad t=)$
Phase angle: $\tan \frac{2 \mathrm{D}}{1=2}$

Frequency ratio: $\quad \frac{\mu}{o}$

One-mass vibration generating system:
$M_{0}{ }^{*} M_{0}$

Two-mass vibration generating system:
$M_{0}{ }^{*} \frac{J_{2}}{J_{1}+J_{2}}$
c) Magnification factor
p $\frac{M_{0}{ }^{*}}{C} V \cos (\mu \quad t=)$
$V \frac{1}{\left(1={ }^{2}\right)^{2}+4 D^{2}{ }^{2}} \frac{p}{n_{\text {stat }}} \frac{M}{M_{0}^{*}}(50)$
${ }^{\mathrm{p}} \quad=$ vibration amplitude of forced vibration
stat $=$ vibration amplitude of forced vibration at a frequency ratio $\eta=0$.

The magnification factor shows the ratio of the dynamic and static load and is a measure for the additional load caused by vibrations (figure 42).

Vibrations

Solution of the Differential Equation of Motion Formulae for the Calculation of Vibrations

Figure 42
Magnification factors for forced, damped and undamped vibrations at periodic moment excitation (power excitation).
Magnification factors V and phase displacement angle ε.

3.4 Formulae for the calculation of vibra-

 tionsFor the calculation of natural frequencies and vibrational loads, a general vibration generating system has to be converted to a calculable substitute system with point masses, spring and damping elements without mass.

3.4.1 Mass

$\mathrm{m}=\mathrm{\varrho} \cdot \mathrm{~V} \quad[\mathrm{~kg}]$
$V=$ volume $\quad\left[m^{3}\right]$
$\mathrm{Q}=$ specific density $\quad\left[\mathrm{kg} / \mathrm{m}^{3}\right]$

3.4.2 Mass moment of inertia

$J=\quad r^{2} d m: \quad$ general integral formula

Circular cylinder:
J $\quad \frac{1}{32} \varrho \quad d^{4} \quad$ I $\quad \pi\left(k^{2} m^{2} \varrho\right.$
$\mathrm{d}=$ diameter $[\mathrm{m}]$
l = length of cylinder Jm@

Vibrations

Terms, Symbols and Units

Term	Quantity	Unit	Explanation
Mass, Mass moment of inertia	$\begin{gathered} \mathrm{m} \\ \mathrm{~J} \end{gathered}$	$\stackrel{\mathrm{kg}}{\mathrm{~kg} \cdot \mathrm{~m}^{2}}$	Translatory vibrating mass m; Torsionally vibrating mass with mass moment of inertia J
Instantaneous value of vibration (displacement, angle)	$\begin{aligned} & x \\ & \varphi \end{aligned}$	$\left.\mathrm{mad}^{\star}\right)$	Instantaneous, time-dependent value of vibration amplitude
Amplitude	$\begin{gathered} \mathrm{X}_{\max ,}, \hat{\mathrm{X}}, \mathrm{~A} \\ \max , \end{gathered}$	$\underset{\mathrm{rad}}{\mathrm{~m}}$	Amplitude is the maximum instantaneous value (peak value) of a vibration.
Oscillating velocity	X	m / s rad/s	Oscillating velocity; Velocity is the instantaneous value of the velocity of change in the direction of vibration.
Inertia force, Moment of inertia forces	$\underset{j}{m} \quad \ddot{x}$	$\begin{gathered} N \\ N \cdot m \end{gathered}$	The d'Alembert's inertia force or the moment of inertia force acts in the opposite direction of the positive acceleration.
Spring rate, Torsional spring rate	$\begin{aligned} & \text { c' } \\ & \text { c } \end{aligned}$	Nm $\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}$	Linear springs
Spring force, Spring moment	$\begin{aligned} & c^{\prime} \cdot x \\ & c \cdot \varphi \end{aligned}$	$\begin{gathered} N \\ N \cdot m \end{gathered}$	In case of linear springs, the spring recoil is proportional to deflection.
Attenuation constant (Damping coefficient), Attenuation constant for rotary motion	$\begin{aligned} & k^{\prime} \\ & \text { k } \end{aligned}$	$\begin{aligned} & \mathrm{N} \cdot \mathrm{~s} / \mathrm{m} \\ & \mathrm{Nms} / \mathrm{rad} \end{aligned}$	In case of Newton's friction, the damping force is proportional to velocity and attenuation constant (linear damping).
Damping factor (Decay coefficient)	$\begin{gathered} \delta=k^{\prime} /(2 \cdot m) \\ \delta=k^{\prime} /(2 \cdot J) \end{gathered}$	$\begin{aligned} & 1 / \mathrm{s} \\ & 1 / \mathrm{s} \end{aligned}$	The damping factor is the damping coefficient referred to twice the mass.
Attenuation ratio (Lehr's damping)	$D=\delta / \omega_{0}$	-	For $\mathrm{D}<1$, a damped vibration exists; for $D \geq 1$, an aperiodic case exists.
Damping ratio		-	The damping ratio is the relation between two amplitudes, one cycle apart.
Logarithmic damping decrement	$\frac{2}{\overline{1=D^{2}}}$	-	$\begin{array}{lll} \pi & \ln \left(\hat{X}_{n}\right. & \left.\hat{x}_{n+1}\right) \\ \pi & \ln \left(\wedge_{n}\right. & \left.{ }_{n+1}\right) \end{array}$
Time	t	S	Coordinate of running time
Phase angle	α	rad	In case of a positive value, it is a lead angle.
Phase displacement angle	$\varepsilon=\alpha_{1}-\alpha_{2}$	rad	Difference between phase angles of two vibration processes with same radian frequency.
Period of a vibration	$\mathrm{T}=2 \cdot \pi / \omega_{0}$	S	Time during which a single vibration occurs.
Frequency of natural vibration	$f=1 / T=\omega_{0} /(2 \cdot \pi)$	Hz	Frequency is the reciprocal value to a period of vibrations; vibrations per sec.
Radian frequency of natural vibration	$\omega_{0}=2 \cdot \pi \cdot f$	rad/s	Radian frequency is the number of vibrations in $2 \cdot \pi$ seconds.
Natural radian frequency (Natural frequency)	$\begin{gathered} \overline{c m} \\ 0 \quad \overline{c J} \end{gathered}$	rad/s rad/s	Vibration frequency of the natural vibration (undamped) of the system
Natural radian frequency when damped	${ }_{0}^{2}=\varrho^{2}$		For a very small attenuation ratio $\mathrm{D}<1$ becomes $\omega_{\mathrm{d}} \approx \omega_{0}$.
Excitation frequency	Ω	rad/s	Radian frequency of excitation
Radian frequency ratio	$\eta=\Omega / \omega_{0}$	-	Resonance exists at $\eta=1$.

*) The unit "rad" may be replaced by " 1 ".

Vibrations

Formulae for the Calculation of Vibrations

3.4.3 Determination of stiffness

Table 9 Calculation of stiffness (examples)

1) For steel: $E=21 \cdot 10^{10} \mathrm{~N} / \mathrm{m}^{2} ; G=8.1 \cdot 10^{10} \mathrm{~N} / \mathrm{m}^{2}$

Vibrations

Formulae for the Calculation of Vibrations

Measuring the stiffness：

In a test，stiffness can be determined by measur－ ing the deformation．This is particularly helpful if the geometric structure is very complex and very difficult to acquire．

Translation：
C $\quad \frac{F}{f} \quad \mathrm{Nm}$
$\mathrm{F}=$ applied force $[\mathrm{N}]$
$\mathrm{f}=$ measured deformation［m］

Torsion：

c I Nm rad
$\mathrm{T}=$ applied torsion torque［ Nm ］
$\varphi=$ measured torsion angle［rad］
Measurements of stiffness are furthermore re－ quired if the material properties of the spring ma－ terial are very complex and it is difficult to rate them exactly．This applies，for instance，to rubber materials of which the resilient properties are de－ pendent on temperature，load frequency，load， and mode of stress（tension，compression， shearing）．Examples of application are orsionally flexible couplings and resilient buffers for vibration isolation of machines and internal combustion engines．
These components often have non－linear progressive stiffness characteristics，dependent on the direction of load of the rubber material． For couplings the dynamic stiffness is given，as a rule，which is measured at a vibrational frequency of 10 Hz （vibrational amplitude $=25 \%$ of the nominal coupling torque）．The dynamic torsional stiffness is greater than the static torsional stiffness，see figure 43.

Figure 43
Static and dynamic torsional stiffness

3．4．4 Overlaying of different stiffnesses

To determine resulting stiffnesses，single stiff nesses are to be added where arrangements in series connection or parallel connection are pos－ sible．

Series connection

Rule：The individual springs in a series connec tion carry the same load，however，they are sub jected to different deformations．
$\frac{1}{\mathrm{C}_{\text {ges }}} \quad \frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}+\frac{1}{\mathrm{C}_{3}}++\frac{1}{\mathrm{C}_{\mathrm{n}}}$

Parallel connection：

Rule：The individual springs in a parallel connec－ tion are always subject to the same deformation．
$\mathrm{c}_{\text {ges }} \mathrm{c}_{1}+\mathrm{c}_{2}+\mathrm{c}_{3}++\mathrm{c}_{\mathrm{n}}$

3．4．5 Conversions

If drives with different speeds or shafts are com－ bined in one vibration generating system，the stiffnesses and masses are to be converted to a reference speed（input or output）
Conversion is carried out as a square of the transmission ratio：

Transmission ratio：

$$
\begin{equation*}
\text { i } \frac{\mathrm{n}_{1}}{\mathrm{n}_{2}} \frac{\text { reference speed }}{\text { speed }} \tag{55}
\end{equation*}
$$

Conversion of stiffnesses $\mathrm{C}_{\mathrm{n} 2}$ and masses $\mathrm{J}_{n 2}$ with speed n_{2} to the respective values $c_{n 1}$ and $J_{n 1}$ with reference speed n_{1} ：
$C_{n 1} \quad c_{n 2} i^{2}$
$J_{n 1} \quad J_{n 2} i^{2}$
Before combining stiffnesses and masses with different inherent speeds，conversion to the com mon reference speed has to be carried out first

Vibrations

Formulae for the Calculation of Vibrations Evaluation of Vibrations

3．4．6 Natural frequencie

a）Formulae for the calculation of the natural frequencies of a fixed one－mass vibration generating system and a free two－mass vibra－ tion generating system
Natural frequency fin Hertz（1／s）：
One－mass vibration generating system
Two－mass vibration generating system：
Torsion ： $\mathrm{f}_{\mathrm{e}}=\frac{1}{2 \pi} \quad \overline{\mathrm{c}}$
（58）$\quad f_{e}=\frac{1}{2 \pi} \quad c \frac{J_{1}+J_{2}}{J_{1}-J_{2}}$
$\mathrm{C}=$ torsional stiffness in［ $\mathrm{Nm} / \mathrm{rad}$ ］
$\mathrm{J}, \mathrm{J}_{\mathrm{i}}=$ mass moments of inertia in［kgm²］
Translation，Bending ：$f_{e}=\frac{1}{2 \pi} \quad \bar{c}$
（60）$\quad f_{e}=\frac{1}{2 \pi} \quad$ c $\frac{m_{1}+m_{2}}{m_{1} \quad m_{2}}$
$c^{\prime}=$ translational stiffness（bending stiffness）in［ N / m ］
$\mathrm{m}, \mathrm{m}_{\mathrm{i}}=$ masses in［kg］
b）Natural bending frequencies of shafts sup－ ported at both ends with applied masses with known deformation f due to the dead weight
$f_{e}=\frac{q}{2 \pi} \quad \frac{\bar{g}}{f} \quad[\mathrm{~Hz}$
$\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$ gravity
$f=$ deformation due to dead weight［m］
$q=$ factor reflecting the effect of the shaft masses on the applied mass
$q=1$ shaft mass is neglected compared with the applied mass
$q=1.03$ ．．． 1.09 common values when considering the shaft masses
$q=1.13$ solid shaft without pulley
c）Natural bending frequencies for shafts，taking into account dead weights（continuum）；gene－ ral formula for the natural frequency in the order f_{e}, i ．
$f_{e, i}=\frac{1}{2 \pi} \quad \frac{\mu_{i}}{l} \quad \bar{E} \quad \mathrm{Q} A z$
$\lambda_{i}=$ inherent value factor for the i－th natural frequency
I＝length of shaft［m］
$E=$ modulus of elasticity $\left[\mathrm{N} / \mathrm{m}^{2}\right.$
I＝moment of area［m ${ }^{4}$ ］
$\mathrm{Q}=$ density $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$
A＝cross－sectional area $\left[\mathrm{m}^{2}\right]$
$d=$ diameter of solid shaft［m］

Table 10λ－values for the first three natural fre－ quencies，dependent on mode of fixing

Bearing application	λ_{1}	λ_{2}	λ_{3}
¢	1.875	4.694	7.855
或	4.730	7.853	10.966
永	π	2π	3π
材	3.927	7.069	10.210

For the solid shaft with free bearing support on both sides，equation（63）is simplified to：
$\mathrm{f}_{\mathrm{e}, \mathrm{i}}=\frac{\pi \quad \mathrm{d}}{8} \quad \dot{\mathrm{i}}^{2} \quad \overline{\overline{\mathrm{E}}} \mathrm{Q} \mathrm{Hz}$
i＝1st，2nd，3rd \ldots order of natural bending frequencies．

3．5 Evaluation of vibrations

The dynamic load of machines can be deter－ mined by means of different measurement methods．Torsional vibration loads in drives，for example，can be measured directly on the shafts by means of wire strain gauges．This requires， however，much time for fixing the strain gauges， for calibration，signal transmission and evalua tion．Since torques in shafts are generated via bearing pressure in gear units，belt drives，etc．，in case of dynamic loads，structure－borne noise is generated which can be acquired by sensing elements at the bearing points in different directions（axial，horizontal，vertical）．

Vibrations

Formulae for the Calculation of Vibrations

Dependent on the requirements, the amplitudes of vibration displacement, velocity and acceleration can be recorded and evaluated in a sum (effective vibration velocity) or frequencyselective. The structure-borne noise signal eflects besides the torque load in the shats also unbalances, alignment errors, meshing hpulses, baching noises, do loping machine the state
o evaluate the actual state of a machine, VDI guideline $20566^{1)}$ or DIN ISO 10816-1/19, 20/ is consulted for the effective vibration velocity, as a lhe frequency range berwen 10 and 1,000 he frequency range between 10 and 1,000 tructure (resilient or rigid foundation) and power structure (resillent or rigid foundation) and power transwited, a distiction is made between four machine groups (table 11). Dependent on the vibration velocity, the vibrational state of a
machine is judged to be "good", "acceptable" "still permissible", and "non-permissible". If vibration velocities are in the "non-permissible range, measures to improve the vibrational state of the machine (balancing, improving the alignment, replacing defective machine parts, displacing the resonance) are required, as a rule the to be volin the service lif of the tate does (experience, verification by machine (experience, verification calculation). Structure-borne noise is emited from the machine surface in the form of airborne noise and has an impact on the environment by the generated noises. For the evaluation o noise, sound pressure level and sound intensity are measured. Gear unit noises are evaluated according to VDI guideline 2159 or DIN 45635 $17,16 /$, see subsection 1.5

Table 11 Boundary limits acc. to VDI guideline $2056{ }^{1)}$) for four machine groups					
Machine groups	Including gear units and machines with input power ratings of ...	Range classification acc. to VDI 2056 ("Effective value of the vibration velocity" in mm/s)			
		Good	Acceptable	Still permis- sible	Non-permissible
K	... up to approx. 15 kW without special foundation.	up to 0.7	0.7 ... 1.8	1.8 ... 4.5	from 4.5 up
M	... from approx. 15 up to 75 kW without special foundation. .. from approx. 75 up to 300 kW and installation on highly tuned, rigid or heavy foundations.	up to 1.1	1.1 ... 2.8	2.8 ... 7.1	from 7.1 up
G	... over 300 kW and installation on highly tuned, rigid or heavy foundations.	up to 1.8	1.8 ... 4.5	4.5 ... 11	from 11 up
T	... over 75 kW and installation on broadly tuned resilient foundations (especially also steel foundations designed according to lightconstruction guidelines).	up to 2.8	2.8 ... 7	7 ... 18	from 18 up

[^4]/1/ DIN 3960: Definitions, parameters and equations for involute cylindrical gears and gear pairs. March 1987 edition. Beuth Verlag GmbH, Berlin
/2/ DIN 3992: Addendum modification of external spur and helical gears. March 1964 edition. Beuth Verlag GmbH, Berlin
/3/ DIN 3993: Geometrical design of cylindrical internal involute gear pairs; Part 3. August 1981 edition. Beuth Verlag GmbH, Berlin
/4/ DIN 3994: Addendum modification of spur gears in the 05-system. August 1963 edition. Beuth Verlag GmbH, Berlin
/5/ Niemann, G. und Winter, H.: Maschinenelemente, Band II, Getriebe allgemein, Zahnradge-triebe-Grundlagen, Stirnradgetriebe. 3rd edition. Springer Verlag, Heidelberg, New York, Tokyo (1985)

16/ Sigg, H.: Profile and longitudinal corrections on involute gears. Semi-Annual Meeting of the AGMA 1965, Paper 109.16

7/ Hösel, Th.: Ermittlung von Tragbild und Flankenrichtungskorrekturen für Evolventen-Stirnräder. Berechnungen mit dem FVA-Programm "Ritzelkorrektur". Zeitschrift Antriebstechnik 22 (1983) Nr. 12
/8/ DIN 3990: Calculation of load capacity of cylindrical gears.
Part 1: Introduction and general influence factors
Part 2: Calculation of pitting resistance
Part 3: Calculation of tooth strength
Part 4: Calculation of scuffing load capacity
Beuth Verlag GmbH, Berlin, December 1987
/9/ FVA-Stirnradprogramm: Vergleich und Zusammenfassung von Zahnradberechnungen mit Hilfe von EDV-Anlagen (jeweils neuester Programmstand). FVA-Forschungsvorhaben Nr. 1., Forschungsvereinigung Antriebstechnik, Frankfurt am Main
/10/ DIN 3990: Calculation of load capacity of cylindrical gears. Application standard for industrial gears.
Part 11: Detailed method; February 1989 edition
Part 12: Simplified method; Draft May 1987
Beuth Verlag GmbH, Berlin
/11/ DIN 3990: Calculation of load capacity of cylindrical gears.
Part 5: Endurance limits and material qualities; December 1987
Beuth Verlag GmbH, Berlin
/12/ FVA-Arbeitsblatt zum Forschungsvorhaben Nr. 8: Grundlagenversuche zur Ermittlung der richtigen Härtetiefe bei Wälz- und Biegebeanspruchung. Stand Dezember 1976. Forschungsvereinigung Antriebstechnik, Frankfurt am Main
/13/ FVA-Ritzelkorrekturprogramm: EDV-Programm zur Ermittlung der Zahnflankenkorrekturen zum Ausgleich der lastbedingten Zahnverformungen (jeweils neuester Programmstand). FVAForschungsvorhaben Nr. 30.
Forschungsvereinigung Antriebstechnik, Frankfurt am Main
/14/ Niemann, G.: Maschinenelemente 2. Bd., Springer Verlag Berlin, Heidelberg, New York (1965)
/15/ Theissen, J.: Vergleichskriterien für Grossgetriebe mit Leistungsverzweigung. VDI-Bericht 488 "Zahnradgetriebe 1983 - mehr Know how für morgen", VDI-Verlag, 1983
/16/ DIN 45635: Measurement of noise emitted by machines.
Part 1: Airborne noise emission; Enveloping surface method; Basic method, divided into 3 grades of accuracy; April 1984 edition
Part 23: Measurement of airborne noise; Enveloping surface method; Gear transmission; July 1978 edition
Beuth Verlag GmbH, Berlin
/17/ VDI-Richtlinien 2159: Emissionskennwerte technischer Schallquellen; Getriebegeräusche; Verein Deutscher Ingenieure, July 1985
/18/ DIN 740: Flexible shaft couplings. Part 2. Parameters and design principles. August 1986 edition; Beuth Verlag GmbH, Berlin
/19/ VDI-Richtlinien 2056: Beurteilungsmasstäbe für mechanische Schwingungen von Maschinen. VDI-Handbuch Schwingungstechnik; Verein Deutscher Ingenieure; October 1964; (08/97 withdrawn without replacement)
/20/ DIN ISO 10816-1: Mechanical vibration - Evaluation of machine vibration by measurements on non-rotating parts. August 1997 edition; Beuth Verlag GmbH, 10772 Berlin

[^0]: 1) Material properties in the test bar
[^1]: 1) Approximate comparative value to ISO VG grades
[^2]: ${ }_{* *}^{*}$ For internal gear pairs, z_{2} and a are to be used as negative quantities.
 **) See subsection 1.2.3.2.

[^3]: For restrictions, see VDI 2159.

[^4]: 1) $08 / 97$ withdrawn without replacement; see /20/
